A novel ex vivo assay to define charge-balanced electrical stimulation parameters for neural precursor cell activation in vivo
[Display omitted] •Designed and implemented a novel ex vivo stimulation paradigm.•Demonstrated enhanced efficacy of current-controlled BPMP application.•Cathodal amplitude impacts NPC expansion and migration.•Directed cathodal migration of NPCs is independent of pulse width.•Ex vivo defined stimulat...
Gespeichert in:
Veröffentlicht in: | Brain research 2023-04, Vol.1804, p.148263-148263, Article 148263 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
•Designed and implemented a novel ex vivo stimulation paradigm.•Demonstrated enhanced efficacy of current-controlled BPMP application.•Cathodal amplitude impacts NPC expansion and migration.•Directed cathodal migration of NPCs is independent of pulse width.•Ex vivo defined stimulation parameters activate NPCs in vivo.
Endogenous neural stem cells and their progeny (together termed neural precursor cells (NPCs)) are promising candidates to facilitate neuroregeneration. Charge-balanced biphasic monopolar stimulation (BPMP) is a clinically relevant approach that can activate NPCs both in vitro and in vivo. Herein, we established a novel ex vivo stimulation system to optimize the efficacy of BPMP electric field (EF) application in activating endogenous NPCs. Using the ex vivo system, we discerned that cathodal amplitude of 200 μA resulted in the greatest NPC pool expansion and enhanced cathodal migration. Application of the same stimulation parameters in vivo resulted in the same NPC activation in the mouse brain. The design and implementation of the novel ex vivo model bridges the gap between in vitro and in vivo systems, enabling a moderate throughput stimulation system to explore and optimize EF parameters that can be applied to clinically relevant brain injury/disease models. |
---|---|
ISSN: | 0006-8993 1872-6240 |
DOI: | 10.1016/j.brainres.2023.148263 |