Targeted Delivery of Zinc Ion Derived by Pseudopolyrotaxane Gel Polymer Electrolyte for Long-Life Zn Anode

Aqueous zinc ion battery is a potential alternative for a stationary energy storage system owing to the inherent properties of the Zn anode. However, the Zn anode suffers from serious Zn dendrite due to the uneven Zn plating. Thus, inspired by the nano-drug delivery to the target site of the tumor c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-02, Vol.15 (5), p.6839-6847
Hauptverfasser: Wu, Kai, Zhan, Shengkang, Liu, Wei, Liu, Xiaoyu, Ning, Fanghua, Liu, Yuyu, Zhang, Jiujun, Yi, Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aqueous zinc ion battery is a potential alternative for a stationary energy storage system owing to the inherent properties of the Zn anode. However, the Zn anode suffers from serious Zn dendrite due to the uneven Zn plating. Thus, inspired by the nano-drug delivery to the target site of the tumor cell, it would be a promising strategy to introduce targeted delivery of zinc ion in the electrolyte for even Zn plating. Passive targeted transport plays an important role in nano-drug delivery, which presents the nano-drug would be released by the nano-drug carrier based on polymer to the particular target site. As a proof-of-concept, a pseudopolyrotaxane conducting the nano-drug carrier applied in targeted cancer therapy is employed as the gel polymer electrolyte (GPE) for long-life Zn anodes. The pseudopolyrotaxane is formed by the self-assembling of α-cyclodextrin (CD) and poly­(ethylene oxide), where the zinc ion can be absorbed and delivered to the target site of the Zn anode benefiting from the hydrogen-bond. Impressively, even Zn plating can be induced by the hydroxyl groups of CD to inhibit Zn dendrite. Moreover, the hydrogen evolution reaction is suppressed by the GPE. Less produced H2 is detected in the GPE, which is demonstrated by the online mass spectrometry. Thus, the Zn||Zn symmetrical cell based on the GPE exhibits a cycling life of 1370 h. Compared to the one based on aqueous electrolyte, Zn||MnO2 battery based on the GPE shows a higher capacity retention. This work is expected to avail the development of the aqueous zinc ion battery.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.2c20194