The heptapeptide somatostatin analogue TT-232 exerts analgesic and anti-inflammatory actions via SST4 receptor activation: In silico, in vitro and in vivo evidence in mice
[Display omitted] Since the conventional and adjuvant analgesics have limited effectiveness frequently accompanied by serious side effects, development of novel, potent pain killers for chronic neuropathic and inflammatory pain conditions is a big challenge. Somatostatin (SS) regulates endocrine, va...
Gespeichert in:
Veröffentlicht in: | Biochemical pharmacology 2023-03, Vol.209, p.115419-115419, Article 115419 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Since the conventional and adjuvant analgesics have limited effectiveness frequently accompanied by serious side effects, development of novel, potent pain killers for chronic neuropathic and inflammatory pain conditions is a big challenge. Somatostatin (SS) regulates endocrine, vascular, immune and neuronal functions, cell proliferation through 5 Gi protein-coupled receptors (SST1-SST5). SS released from the capsaicin-sensitive peptidergic sensory nerves mediates anti-inflammatory and antinociceptive effects without endocrine actions via SST4. The therapeutic use of the native SS is limited by its diverse biological actions and short plasma elimination half-life. Therefore, SST4 selective SS analogues could be promising analgesic and anti-inflammatory drug candidates with new mode of action. TT-232 is a cyclic heptapeptide showing great affinity to SST4 and SST1. Here, we report the in silico SST4 receptor binding mechanism, in vitro binding (competition assay) and cAMP- decreasing effect of TT-232 in SST4-expressing CHO cells, as well as its analgesic and anti-inflammatory actions in chronic neuropathic pain and arthritis models using wildtype and SST4-deficient mice. TT-232 binds to SST4 with similar interaction energy (-11.03 kcal/mol) to the superagonist J-2156, displaces somatostatin from SST4 binding (10 nM to 30 µM) and inhibits forskolin-stimulated cAMP accumulation (EC50: 371.6 ± 58.03 nmol; Emax: 78.63 ± 2.636 %). Its i.p. injection (100, 200 µg/kg) results in significant, 35.7 % and 50.4 %, analgesic effects upon single administration in chronic neuropathic pain and repeated injection in arthritis models in wildtype, but not in SST4-deficient mice. These results provide evidence that the analgesic effect of TT-232 is mediated by SST4 activation, which might open novel drug developmental potentials.
Chemical compounds
Chemical compounds studied in this article TT-232 (PubChem CID: 74053735). |
---|---|
ISSN: | 0006-2952 1873-2968 |
DOI: | 10.1016/j.bcp.2023.115419 |