Mechanically gated formation of donor–acceptor Stenhouse adducts enabling mechanochemical multicolour soft lithography
Stress-sensitive molecules called mechanophores undergo productive chemical transformations in response to mechanical force. A variety of mechanochromic mechanophores, which change colour in response to stress, have been developed, but modulating the properties of the dyes generally requires the ind...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2023-03, Vol.15 (3), p.332-338 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Stress-sensitive molecules called mechanophores undergo productive chemical transformations in response to mechanical force. A variety of mechanochromic mechanophores, which change colour in response to stress, have been developed, but modulating the properties of the dyes generally requires the independent preparation of discrete derivatives. Here we introduce a mechanophore platform enabling mechanically gated multicolour chromogenic reactivity. The mechanophore is based on an activated furan precursor to donor–acceptor Stenhouse adducts (DASAs) masked as a hetero-Diels–Alder adduct. Mechanochemical activation of the mechanophore unveils the DASA precursor, and subsequent reaction with a secondary amine generates an intensely coloured DASA. Critically, the properties of the DASA are controlled by the amine, and thus a single mechanophore can be differentiated post-activation to produce a wide range of functionally diverse DASAs. We highlight this system by establishing the concept of mechanochemical multicolour soft lithography whereby a complex multicolour composite image is printed into a mechanochemically active elastomer through an iterative process of localized compression followed by reaction with different amines.
Mechanochemical generation of dyes with different photophysical properties generally requires the use of discrete mechanophore derivatives with unique chemical structures. Now it has been shown that diverse donor–acceptor Stenhouse adducts can be produced via a mechanically gated chromogenic reaction, enabling mechanochemical multicolour lithography. |
---|---|
ISSN: | 1755-4330 1755-4349 |
DOI: | 10.1038/s41557-022-01126-5 |