Self-supported Ni2P/NiMoP2 bimetallic phosphide with strong electronic interaction for efficient overall water splitting

[Display omitted] Electronic regulation via interface engineering is recognized as an attractive strategy for boosting electrocatalytic activity. In this work, a self-supported heterostructure electrocatalyst is explored by a feasible hydrothermal-pyrolysis strategy, in which Ni2P nanoparticles are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2023-05, Vol.637, p.76-84
Hauptverfasser: Sun, Ling, Zhao, Shuangte, Sha, Linna, Zhuang, Guilin, Wang, Xiaojun, Han, Xiguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Electronic regulation via interface engineering is recognized as an attractive strategy for boosting electrocatalytic activity. In this work, a self-supported heterostructure electrocatalyst is explored by a feasible hydrothermal-pyrolysis strategy, in which Ni2P nanoparticles are anchored on NiMoP2 nanosheet arrays grown on carbon cloth (Ni2P/NiMoP2/CC). Benefitting from the nanosheet array architecture and the synergy effect between the Ni2P and NiMoP2, the as-prepared Ni2P/NiMoP2/CC manifests highly efficient activity and stability toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Density functional theory calculations further indicates that the heterointerface in Ni2P/NiMoP2/CC enable optimized interface electron structure and reduce the activation barriers for intermediates, improving the intrinsic electrocatalytic activity. Remarkably, the Ni2P/NiMoP2/CC||Ni2P/NiMoP2/CC electrolyzer affords 10 mA cm−2 at a low voltage of 1.59 V, outperforming its monometallic phosphides counterparts and most of transition metal-based bifunctional electrocatalysts. The electrolyser was powered by a solar cell to produce H2 and O2 simultaneously, indicating its potential application in solar-to-hydrogen conversion.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2023.01.035