Changes in fungal community during different phases in conventional and bioreactor composting systems according to metatranscriptomics analysis

We determined the changes that occurred in fungal community structures and their functions in conventional and bioreactor composting systems. The Illumina MiSeq platform was employed to sequence cDNA by reverse transcription to conduct metatranscriptomics analysis of RNA, and the FUNGuild tool was a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Letters in applied microbiology 2023-01, Vol.76 (1)
Hauptverfasser: Ding, Jianli, Wei, Dan, An, Zhizhuang, Jin, Liang, Wu, Fengxi, Suo, Linna, Wang, Lei, Li, Yan, Cai, Shanshan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We determined the changes that occurred in fungal community structures and their functions in conventional and bioreactor composting systems. The Illumina MiSeq platform was employed to sequence cDNA by reverse transcription to conduct metatranscriptomics analysis of RNA, and the FUNGuild tool was applied. The α-diversity of fungi in the bioreactor composter increased throughout composting, especially in the initial three phases, but decreased in the conventional composting system. The three dominant phyla in the bioreactor system were Ascomycota (30.27%-68.50%), Mortierellomycota (3.81%-39.51%), and Basidiomycota (9.17%-30.86%). Ascomycota (76.96%-97.18%) was the main phylum in the conventional composting system. Mortierella, Guehomyces, Plectosphaerella, Chaetomium, Millerozyma, and Coprinopsis were the main genera in the bioreactor composter. In the same phase, significant differences in the fungal functions were found between the two composting methods. Available phosphorus was the main factor that affected the community structures and functions of fungi in the bioreactor composter.
ISSN:1472-765X
1472-765X
DOI:10.1093/lambio/ovac018