N-doped defective carbon with trace Co for efficient rechargeable liquid electrolyte-/all-solid-state Zn-air batteries
[Display omitted] Simple synthesis of multifunctional electrocatalysts with plentiful active sites from earth-abundant materials is especially fascinating. Here, N-doped defective carbon with trace Co (1.5 wt%) was prepared via a scalable one pot solid pyrolysis process. The sample exhibits efficien...
Gespeichert in:
Veröffentlicht in: | Science bulletin 2018-05, Vol.63 (9), p.548-555 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Simple synthesis of multifunctional electrocatalysts with plentiful active sites from earth-abundant materials is especially fascinating. Here, N-doped defective carbon with trace Co (1.5 wt%) was prepared via a scalable one pot solid pyrolysis process. The sample exhibits efficient bifunctional OER/ORR activity in alkaline, mainly ascribed to the unique micro-mesoporous structure (1–3 nm), high population of graphitic-N doping (up to 49.0%), abundant defects and the encapsulated Co nanoparticles with graphitized carbon. The according rechargeable liquid Zn-air batteries showed excellent performance (maximum power density of 154.0 mW cm−2; energy density of 773 Wh kg−1 at 5 mA cm−2 and charging-discharging cycling stability over 100 cycles). As a proof-of-concept, the flexible, rechargeable all-solid-state Zn-air batteries were constructed, and displayed a maximum power density as high as 45.9 mW cm−2, among the top level of those reported previously. |
---|---|
ISSN: | 2095-9273 2095-9281 |
DOI: | 10.1016/j.scib.2018.04.003 |