Submarine hydrogeology of the Hawaiian archipelagic apron. II - Numerical simulations of coupled heat transport and fluid flow

We perform numerical simulations of buoyancy-driven, pore fluid flow in the Hawaiian archipelagic apron and underlying oceanic crust in order to determine the extent to which heat redistributed by such flow might cause conductive heat flow measurements to underrepresent the true mantle heat flux. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research 2000-09, Vol.105 (B9), p.21371-21385
Hauptverfasser: Harris, Robert N, Garven, Grant, Georgen, Jennifer, McNutt, Marcia K, Christiansen, Lizet, Von Herzen, Richard P
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We perform numerical simulations of buoyancy-driven, pore fluid flow in the Hawaiian archipelagic apron and underlying oceanic crust in order to determine the extent to which heat redistributed by such flow might cause conductive heat flow measurements to underrepresent the true mantle heat flux. We also seek an understanding of undulations observed in finely spaced heat flow measurements acquired north of Oahu and Maro Reef with wavelengths of 10 to 100 km and amplitudes of 2 to 7 mW/sq m. We find that pore fluid flow can impart significant perturbations to seafloor heat flow from the value expected assuming a constant mantle flux. In the simplest scenario, moat-wide circulation driven by bathymetric relief associated with the volcanic edifice recharges a fluid system over the moat and discharges the geothermally heated water through the volcanic edifice. The existing heat flow data are unable to confirm the existence of such a flow regime, in that it produces prominent heat flow anomalies only on the steep flanks of the volcano where heat flow probes cannot penetrate. However, this flow system does not significantly mask the mantle flux for reasonable permeabilities and flow rates. (Author)
ISSN:0148-0227