Classification of topological phases in one dimensional interacting non-Hermitian systems and emergent unitarity
[Display omitted] Topological phases in non-Hermitian systems have become fascinating subjects recently. In this paper, we attempt to classify topological phases in 1D interacting non-Hermitian systems. We begin with the non-Hermitian generalization of the Su-Schrieffer-Heeger (SSH) model and discus...
Gespeichert in:
Veröffentlicht in: | Science bulletin 2021-09, Vol.66 (17), p.1731-1739 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Topological phases in non-Hermitian systems have become fascinating subjects recently. In this paper, we attempt to classify topological phases in 1D interacting non-Hermitian systems. We begin with the non-Hermitian generalization of the Su-Schrieffer-Heeger (SSH) model and discuss its many-body topological Berry phase, which is well defined for all interacting quasi-Hermitian systems (non-Hermitian systems that have real energy spectrum). We then demonstrate that the classification of topological phases for quasi-Hermitian systems is exactly the same as their Hermitian counterparts. Finally, we construct the fixed point partition function for generic 1D interacting non-Hermitian local systems and find that the fixed point partition function still has a one-to-one correspondence to their Hermitian counterparts. Thus, we conclude that the classification of topological phases for generic 1D interacting non-Hermitian systems is still exactly the same as Hermitian systems. |
---|---|
ISSN: | 2095-9273 2095-9281 |
DOI: | 10.1016/j.scib.2021.04.027 |