Development of a machine learning algorithm to predict complications of total laparoscopic anterior resection and natural orifice specimen extraction surgery in rectal cancer
Total laparoscopic anterior resection (tLAR) and natural orifice specimen extraction surgery (NOSES) has been widely adopted in the treatment of rectal cancer (RC). However, no study has been performed to predict the short-term outcomes of tLAR using machine learning algorithms to analyze a national...
Gespeichert in:
Veröffentlicht in: | European journal of surgical oncology 2023-07, Vol.49 (7), p.1258-1268 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Total laparoscopic anterior resection (tLAR) and natural orifice specimen extraction surgery (NOSES) has been widely adopted in the treatment of rectal cancer (RC). However, no study has been performed to predict the short-term outcomes of tLAR using machine learning algorithms to analyze a national cohort.
Data from consecutive RC patients who underwent tLAR were collected from the China NOSES Database (CNDB). The random forest (RF), extreme gradient boosting (XGBoost), support vector machine (SVM), deep neural network (DNN), logistic regression (LR) and K-nearest neighbor (KNN) algorithms were used to develop risk models to predict short-term complications of tLAR. The area under the receiver operating characteristic curve (AUROC), Gini coefficient, specificity and sensitivity were calculated to assess the performance of each risk model. The selected factors from the models were evaluated by relative importance.
A total of 4313 RC patients were identified, and 667 patients (15.5%) developed postoperative complications. The machine learning model of XGBoost showed more promising results in the prediction of complication than other models (AUROC 0.90, P |
---|---|
ISSN: | 0748-7983 1532-2157 |
DOI: | 10.1016/j.ejso.2023.01.007 |