Severe kyphoscoliosis correction utilizing sublaminar bands in the setting of a vertebral column resection: a unique technical report
Purpose Severe kyphoscoliosis produces combined coronal and sagittal imbalance, a challenging presentation of Adult Spinal Deformity (ASD). Vertebral column resection (VCR) provides three-dimensional correction typically reserved for severe and/or fixed deformities. The challenge of a VCR is to stab...
Gespeichert in:
Veröffentlicht in: | Spine deformity 2023-05, Vol.11 (3), p.747-752 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
Severe kyphoscoliosis produces combined coronal and sagittal imbalance, a challenging presentation of Adult Spinal Deformity (ASD). Vertebral column resection (VCR) provides three-dimensional correction typically reserved for severe and/or fixed deformities. The challenge of a VCR is to stabilize the spinal column during incremental reduction maneuvers to correct the deformity. We describe novel use of sub-laminar bands with a temporary pivoting rod construct to achieve coronal and sagittal correction in one reductive maneuver.
Methods
All available notes, imaging, and reports were summarized for inclusion.
Results
A 67-year-old male presented severe, progressive thoracolumbar kyphoscoliosis, subsequent back pain, and difficulty in ambulating. Given the progression, surgical intervention was undertaken. The patient underwent an L3 VCR followed by instrumentation from T2 to pelvis. Kyphoscoliosis correction was performed via a single reduction maneuver using novel pivoting-rod construct and sub-laminar bands followed by quad-rod construct placement. Fresh, frozen, femoral head allograft, and BMP were utilized. The patient was placed in a Jewett brace for 6 weeks postoperatively and recovered. His condition remains optimized at three-year follow-up.
Conclusion
Correcting three-dimensional deformities can require vertebral column resection and pose risk during correction. We propose a sub-laminar band with a pivot-rod construct as a safe, effective technique, limiting the number of reduction maneuvers. |
---|---|
ISSN: | 2212-134X 2212-1358 |
DOI: | 10.1007/s43390-023-00640-x |