Quadrature rules using first derivatives for oscillatory integrands

We consider the integral of a function y(x), I(y(x))= ∫ −1 1 y(x) dx and its approximation by a quadrature rule of the form Q N(y(x))= ∑ k=1 N w ky(x k)+ ∑ k=1 N α ky′(x k), i.e., by a rule which uses the values of both y and its derivative at nodes of the quadrature rule. We examine the cases when...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2002-03, Vol.140 (1), p.479-497
Hauptverfasser: Kim, Kyung Joong, Cools, Ronald, Ixaru, L.Gr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the integral of a function y(x), I(y(x))= ∫ −1 1 y(x) dx and its approximation by a quadrature rule of the form Q N(y(x))= ∑ k=1 N w ky(x k)+ ∑ k=1 N α ky′(x k), i.e., by a rule which uses the values of both y and its derivative at nodes of the quadrature rule. We examine the cases when the integrand is either a smooth function or an ω dependent function of the form y(x)=f 1(x) sin(ωx)+f 2(x) cos(ωx) with smoothly varying f 1 and f 2. In the latter case, the weights w k and α k are ω dependent. We establish some general properties of the weights and present some numerical illustrations.
ISSN:0377-0427
1879-1778
DOI:10.1016/S0377-0427(01)00483-6