Quadrature rules using first derivatives for oscillatory integrands
We consider the integral of a function y(x), I(y(x))= ∫ −1 1 y(x) dx and its approximation by a quadrature rule of the form Q N(y(x))= ∑ k=1 N w ky(x k)+ ∑ k=1 N α ky′(x k), i.e., by a rule which uses the values of both y and its derivative at nodes of the quadrature rule. We examine the cases when...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2002-03, Vol.140 (1), p.479-497 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the integral of a function
y(x),
I(y(x))=
∫
−1
1
y(x)
dx
and its approximation by a quadrature rule of the form
Q
N(y(x))=
∑
k=1
N
w
ky(x
k)+
∑
k=1
N
α
ky′(x
k),
i.e., by a rule which uses the values of both
y and its derivative at nodes of the quadrature rule. We examine the cases when the integrand is either a smooth function or an
ω dependent function of the form
y(x)=f
1(x)
sin(ωx)+f
2(x)
cos(ωx)
with smoothly varying
f
1 and
f
2. In the latter case, the weights
w
k
and
α
k
are
ω dependent. We establish some general properties of the weights and present some numerical illustrations. |
---|---|
ISSN: | 0377-0427 1879-1778 |
DOI: | 10.1016/S0377-0427(01)00483-6 |