Reliability of respiratory-gated real-time two-dimensional cine incorporating deep learning reconstruction for the assessment of ventricular function in an adult population

This study aimed to assess the image quality and accuracy of respiratory-gated real-time two-dimensional (2D) cine incorporating deep learning reconstruction (DLR) for the quantification of biventricular volumes and function compared with those of the standard reference, that is, breath-hold 2D bala...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The international journal of cardiovascular imaging 2023-05, Vol.39 (5), p.1001-1011
Hauptverfasser: Orii, Makoto, Sone, Misato, Osaki, Takeshi, Kikuchi, Kei, Sugawara, Tsuyoshi, Zhu, Xucheng, Janich, Martin A., Nozaki, Atsushi, Yoshioka, Kunihiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aimed to assess the image quality and accuracy of respiratory-gated real-time two-dimensional (2D) cine incorporating deep learning reconstruction (DLR) for the quantification of biventricular volumes and function compared with those of the standard reference, that is, breath-hold 2D balanced steady-state free precession (bSSFP) cine, in an adult population. Twenty-four patients (15 men, mean age 50.7 ± 16.5 years) underwent cardiac magnetic resonance for clinical indications, and 2D DLR and bSSFP cine were acquired on the short-axis view. The image quality scores were based on three main criteria: blood-to-myocardial contrast, endocardial edge delineation, and presence of motion artifacts throughout the cardiac cycle. Biventricular end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), ejection fraction (EF), and left ventricular mass (LVM) were analyzed. The 2D DLR cine had significantly shorter scan time than bSSFP (41.0 ± 11.3 s vs. 327.6 ± 65.8 s; p 
ISSN:1875-8312
1569-5794
1875-8312
1573-0743
DOI:10.1007/s10554-023-02793-2