Parameter configurations for hole extraction in cellular neural networks (CNN)
It is shown that the holes of the objects in an input image with a CT-CNN [1] or a DT-CNN [2] may be obtained in a single transient using just one linear parameter configuration. A set of local rules is given that describe how a CNN with a linear configuration may extract the hole of the objects of...
Gespeichert in:
Veröffentlicht in: | Analog integrated circuits and signal processing 2002-08, Vol.32 (2), p.149-155 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is shown that the holes of the objects in an input image with a CT-CNN [1] or a DT-CNN [2] may be obtained in a single transient using just one linear parameter configuration. A set of local rules is given that describe how a CNN with a linear configuration may extract the hole of the objects of an input image in a single transient. The parameter configuration for DT-CNNs or for CT-CNNs is obtained as the solution of a single linear programming problem, including robustness as an objective. The tolerances to multiplicative and additive errors caused by circuit inaccuracies for the linear hole-extraction configurations proposed have been deduced. These tolerable errors have been corroborated by simulations. The tolerance to errors and the speed of the CT-CNN linear configuration proposed for hole extraction are compared with those of the CT-CNN nonlinear configuration found in the bibliography [3]. |
---|---|
ISSN: | 0925-1030 |
DOI: | 10.1023/A:1019578026436 |