Klarigi: Characteristic explanations for semantic biomedical data

Annotation of biomedical entities with ontology classes provides for formal semantic analysis and mobilisation of background knowledge in determining their relationships. To date, enrichment analysis has been routinely employed to identify classes that are over-represented in annotations across sets...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2023-02, Vol.153, p.106425, Article 106425
Hauptverfasser: Slater, Luke T., Williams, John A., Schofield, Paul N., Russell, Sophie, Pendleton, Samantha C., Karwath, Andreas, Fanning, Hilary, Ball, Simon, Hoehndorf, Robert, Gkoutos, Georgios V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Annotation of biomedical entities with ontology classes provides for formal semantic analysis and mobilisation of background knowledge in determining their relationships. To date, enrichment analysis has been routinely employed to identify classes that are over-represented in annotations across sets of groups, such as biosample gene expression profiles or patient phenotypes, and is useful for a range of tasks including differential diagnosis and causative variant prioritisation. These approaches, however, usually consider only univariate relationships, make limited use of the semantic features of ontologies, and provide limited information and evaluation of the explanatory power of both singular and grouped candidate classes. Moreover, they are not designed to solve the problem of deriving cohesive, characteristic, and discriminatory sets of classes for entity groups. We have developed a new tool, called Klarigi, which introduces multiple scoring heuristics for identification of classes that are both compositional and discriminatory for groups of entities annotated with ontology classes. The tool includes a novel algorithm for derivation of multivariable semantic explanations for entity groups, makes use of semantic inference through live use of an ontology reasoner, and includes a classification method for identifying the discriminatory power of candidate sets, in addition to significance testing apposite to traditional enrichment approaches. We describe the design and implementation of Klarigi, including its scoring and explanation determination methods, and evaluate its use in application to two test cases with clinical significance, comparing and contrasting methods and results with literature-based and enrichment analysis methods. We demonstrate that Klarigi produces characteristic and discriminatory explanations for groups of biomedical entities in two settings. We also show that these explanations recapitulate and extend the knowledge held in existing biomedical databases and literature for several diseases. We conclude that Klarigi provides a distinct and valuable perspective on biomedical datasets when compared with traditional enrichment methods, and therefore constitutes a new method by which biomedical datasets can be explored, contributing to improved insight into semantic data. •Enrichment analysis is used to identify over-represented classes in semantic profiles.•Enrichment does not identify discriminatory and characteristic explanations for
ISSN:0010-4825
1879-0534
1879-0534
DOI:10.1016/j.compbiomed.2022.106425