Achieving win-win outcomes with cerium-loaded porous aluminum sludge hydrogel microspheres for enhanced phosphate removal
Breaking the technical bottleneck of traditional powdered adsorbent in phosphate adsorption application treatment, a macroscopic high adsorption performance aluminum sludge-based composite hydrogel material was constructed to synergistically solve the problems of water eutrophication and aluminum sl...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2023-04, Vol.867, p.161530-161530, Article 161530 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Breaking the technical bottleneck of traditional powdered adsorbent in phosphate adsorption application treatment, a macroscopic high adsorption performance aluminum sludge-based composite hydrogel material was constructed to synergistically solve the problems of water eutrophication and aluminum sludge resourcization. In this study, porous Ce-modified aluminum sludge hydrogel microspheres (Ce-AlS-SA) were prepared to improve the surface chemical structure and microscopic morphology of the macroscopic adsorbent material to enhance the adsorption capacity and achieve effective solid-liquid separation. The best adsorption performance of the material (Ce-AlS12-SA1) was obtained when the Ce-AlS: SA: Na2CO3 was 12:1:1, and obtained the optimal adsorption conditions by Response Surface Method (RSM) with 1.5 mg/L of the dosage, 4 of pH and 50 mg/L of Cphosphate. The maximum adsorption of 20.36 mg P/g was obtained by the Langmuir model at 303 K, which was 2.92 times more than raw sludge. According to the Freundlich and pseudo-second-order kinetic model, the adsorption process is chemisorption; the multi-stage adsorption process is reflected in the intraparticle diffusion and film diffusion models. The main mechanisms combined with the characterization analysis are electrostatic gravity, ligand exchange, and inner-sphere complexation. Meanwhile, Ce-AlS12-SA1 shows good resistance to interference in the coexistence of multiple ions. Therefore, this material can be recognized as a new material with in-depth, diversified and practical needs for resourceful utilization, which is expected to achieve extensive engineering applications in the future.
[Display omitted]
•Aluminum sludge-based hydrogel beads macroscopic adsorbent was prepared.•The adsorption performance was improved by cerium modification.•Pore volume was increased 2-fold by Na2CO3 pore making.•Easy separation by macroscopic design of microspheres.•The maximum adsorption was 2.92 times more than raw sludge. |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2023.161530 |