Physical Origins of Intrinsic Stresses in Volmer–Weber Thin Films
As-deposited thin films grown by vapor deposition often exhibit large intrinsic stresses that can lead to film failure. While this is an “old” materials problem, our understanding has only recently begun to evolve in a more sophisticated fashion. Sensitive real-time measurements of stress evolution...
Gespeichert in:
Veröffentlicht in: | MRS bulletin 2002-01, Vol.27 (1), p.19-25 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As-deposited thin films grown by vapor deposition often exhibit large intrinsic stresses that can lead to film failure. While this is an “old” materials problem, our understanding has only recently begun to evolve in a more sophisticated fashion. Sensitive real-time measurements of stress evolution during thin-film deposition reveal a generic compressive–tensile–compressive behavior that correlates with island nucleation and growth, island coalescence, and postcoalescence film growth. In this article, we review the fundamental mechanisms that can generate stresses during the growth of Volmer–Weber thin films. Compressive stresses in both discontinuous and continuous films are generated by surface-stress effects. Tensile stresses are created during island coalescence and grain growth. Compressive stresses can also result from the flux-driven incorporation of excess atoms within grain boundaries. While significant progress has been made in this field recently, further modeling and experimentation are needed to quantitatively sort out the importance of the different mechanisms to the overall behavior. |
---|---|
ISSN: | 0883-7694 1938-1425 |
DOI: | 10.1557/mrs2002.15 |