Progress in the generalization of wall-function treatments
This paper describes progress in developing an analytical representation of the variation of the dynamic variables and temperature across the near-wall sublayer of a turbulent flow. The aim is to enable the effective “resistance” of the viscous sublayer to the transport of heat and momentum to be pa...
Gespeichert in:
Veröffentlicht in: | International journal of heat and fluid flow 2002-04, Vol.23 (2), p.148-160 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper describes progress in developing an analytical representation of the variation of the dynamic variables and temperature across the near-wall sublayer of a turbulent flow. The aim is to enable the effective “resistance” of the viscous sublayer to the transport of heat and momentum to be packaged in the form of a “wall function”, thus enabling CFD predictions of convective heat transfer to be made without incurring the cost of the very fine near-wall grid that would otherwise have to be adopted. While the general idea is not new, the detailed strategy contains many new features, which have led to a scheme capable of accounting for the effects of buoyancy, pressure gradient and of variations in molecular transport properties. The scheme is applied to the problem of forced and mixed convection in a vertical pipe and to the opposed wall jet with encouraging results. |
---|---|
ISSN: | 0142-727X 1879-2278 |
DOI: | 10.1016/S0142-727X(01)00143-6 |