Pulmonary surfactant function and molecular architecture is disrupted in the presence of vaping additives

Inhalation of harmful vaping additives has led to a series of lung illnesses. Some of the selected additives such as vitamin E acetate, and related molecules like vitamin E and cannabidiol, may interfere with the function of the lung surfactant. Proper lipid organization in lung surfactant is key to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2023-02, Vol.222, p.113132-113132, Article 113132
Hauptverfasser: Van Bavel, Nicolas, Lai, Patrick, Amrein, Matthias, Prenner, Elmar J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inhalation of harmful vaping additives has led to a series of lung illnesses. Some of the selected additives such as vitamin E acetate, and related molecules like vitamin E and cannabidiol, may interfere with the function of the lung surfactant. Proper lipid organization in lung surfactant is key to maintaining low surface tensions, which provides alveolar stability and effective gas exchange throughout respiration. Physiological surfactants, such as bovine lipid extract surfactant used to treat neonatal respiratory distress syndrome, serve as a good model for examining the potential effects of vape additives on proper function. We have found that all additives impede the surfactants’ ability to efficiently reach high surface pressures as these systems displayed numerous shoulders throughout compression with accompanying defects to lipid organization. Moreover, the formation of lipid bilayer stacks in the film are hindered by the additives, most notably with vitamin e acetate. Loss of these stacks leave the film prone to buckling and collapse under high compression that occurs at the end of expiration. The data suggest that the additives may interfere with both proper lipid organization and the surfactant protein function. [Display omitted] •The lipophilic nature of vaping additives allows partitioning into lung surfactant.•Vaping additives altered film organization and the ability to maintain low surface tension.•Impairment bilayer stacks suggest vaping additives interfere with surfactant protein function.•Interference with surfactant function can lead to respiratory distress.
ISSN:0927-7765
1873-4367
DOI:10.1016/j.colsurfb.2023.113132