Combining observational and experimental datasets using shrinkage estimators

We consider the problem of combining data from observational and experimental sources to draw causal conclusions. To derive combined estimators with desirable properties, we extend results from the Stein shrinkage literature. Our contributions are threefold. First, we propose a generic procedure for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 2023-12, Vol.79 (4), p.2961-2973
Hauptverfasser: Rosenman, Evan T.R., Basse, Guillaume, Owen, Art B., Baiocchi, Mike
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the problem of combining data from observational and experimental sources to draw causal conclusions. To derive combined estimators with desirable properties, we extend results from the Stein shrinkage literature. Our contributions are threefold. First, we propose a generic procedure for deriving shrinkage estimators in this setting, making use of a generalized unbiased risk estimate. Second, we develop two new estimators, prove finite sample conditions under which they have lower risk than an estimator using only experimental data, and show that each achieves a notion of asymptotic optimality. Third, we draw connections between our approach and results in sensitivity analysis, including proposing a method for evaluating the feasibility of our estimators.
ISSN:0006-341X
1541-0420
DOI:10.1111/biom.13827