New Worst-Case Upper Bounds for SAT
In 1980 Monien and Speckenmeyer proved that satisfiability of a propositional formula consisting of K clauses (of arbitrary length) can be checked in time of the order 2^sup K / 3^. Recently Kullmann and Luckhardt proved the worst-case upper bound 2^sup L / 9^, where L is the length of the input for...
Gespeichert in:
Veröffentlicht in: | Journal of automated reasoning 2000-05, Vol.24 (4), p.397-420 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In 1980 Monien and Speckenmeyer proved that satisfiability of a propositional formula consisting of K clauses (of arbitrary length) can be checked in time of the order 2^sup K / 3^. Recently Kullmann and Luckhardt proved the worst-case upper bound 2^sup L / 9^, where L is the length of the input formula. The algorithms leading to these bounds are based on the splitting method, which goes back to the Davis-Putnam procedure. Transformation rules (pure literal elimination, unit propagation, etc.) constitute a substantial part of this method. In this paper we present a new transformation rule and two algorithms using this rule. We prove that these algorithms have the worst-case upper bounds 2^sup 0. 30897 K^ and 2^sup 0. 10299 L^, respectively.[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0168-7433 1573-0670 |
DOI: | 10.1023/A:1006340920104 |