Intraseptal implantation of NGF-releasing microspheres promote the survival of axotomized cholinergic neurons
Neurotrophic factors therapy requires their precise delivery to the targeted neuronal population. For this purpose, a wide range of strategies have been developed, and among them the stereotaxic implantation of biodegradable microparticles. To assess the in vivo activity of NGF-releasing PLGA micros...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2000-10, Vol.21 (20), p.2097-2101 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Neurotrophic factors therapy requires their precise delivery to the targeted neuronal population. For this purpose, a wide range of strategies have been developed, and among them the stereotaxic implantation of biodegradable microparticles. To assess the in vivo activity of NGF-releasing PLGA microspheres, unloaded and NGF-loaded microparticles were implanted in the rat brain, near the septal cholinergic neurons, axotomized by an unilateral transection of the fornix-fimbria. Histological analysis at two and six weeks after implantation revealed a non-specific astro- and micro-glial reaction around the microspheres, identical for both unloaded and NGF-loaded microspheres. No neuronal toxicity was noticed, and healthy looking neurons were observed in contact with the microspheres. In the non-treated animals, the percentage of axotomized surviving neurons, when compared to the contralateral intact side, was 31 +/- 2 and 27 +/- 1% at two and six weeks, respectively. Unloaded microspheres caused no protective nor neurotoxic effects (40 +/- 9 and 39 +/- 6% of surviving cholinergic neurons at two and six weeks, respectively). In contrast, NGF-loaded microspheres showed a significant effect on the survival of axotomized cholinergic neurons at two and six weeks after implantation (66 +/- 9 and 61 +/- 5% when compared to the contralateral intact side, respectively). These results show that PLGA microparticles present no neurotoxicity and release sufficient amounts of bioactive NGF to significantly limit the lesion-induced disappearance of cholinergic neurons in the septum during at least six weeks. PLGA microparticles can be used in the future to administer neurotrophic factors in central nervous system disorders. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/S0142-9612(00)00141-1 |