Model uncertainty quantification in Cox regression

We consider covariate selection and the ensuing model uncertainty aspects in the context of Cox regression. The perspective we take is probabilistic, and we handle it within a Bayesian framework. One of the critical elements in variable/model selection is choosing a suitable prior for model paramete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 2023-09, Vol.79 (3), p.1726-1736
Hauptverfasser: García-Donato, Gonzalo, Cabras, Stefano, Castellanos, María Eugenia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider covariate selection and the ensuing model uncertainty aspects in the context of Cox regression. The perspective we take is probabilistic, and we handle it within a Bayesian framework. One of the critical elements in variable/model selection is choosing a suitable prior for model parameters. Here, we derive the so-called conventional prior approach and propose a comprehensive implementation that results in an automatic procedure. Our simulation studies and real applications show improvements over existing literature. For the sake of reproducibility but also for its intrinsic interest for practitioners, a web application requiring minimum statistical knowledge implements the proposed approach.
ISSN:0006-341X
1541-0420
1541-0420
DOI:10.1111/biom.13823