Elevated levels of biomarkers of oxidative stress and renal injury linked to nitrogenous flame retardants exposure in e-waste dismantling site: A case study in China

Nitrogenous flame retardants (NFRs) have aroused worldwide public concern as their nephrotoxic effect. However, knowledge regarding the pathogenesis mechanism of their exposure to induce kidney injury remains largely unknown. In this study, eight NFRs, four oxidative stress biomarkers (OSBs), and on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2023-02, Vol.314, p.137747-137747, Article 137747
Hauptverfasser: Shi, Yumeng, Chen, Shucong, Yan, Mengqi, Cheng, Zhipeng, Zhao, Leicheng, Liu, Yarui, Zhang, Bo, Zhu, Hongkai, Zhang, Tao, Kannan, Kurunthachalam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nitrogenous flame retardants (NFRs) have aroused worldwide public concern as their nephrotoxic effect. However, knowledge regarding the pathogenesis mechanism of their exposure to induce kidney injury remains largely unknown. In this study, eight NFRs, four oxidative stress biomarkers (OSBs), and one kidney injury biomarker, namely neutrophil gelatinase-associated lipocalin (NGAL), were measured in urine specimens collected from residents living around e-waste disassembly and reference areas, representing two exposure scenarios. Significant higher concentrations of Σ8NFR (median: 70.6 vs. 33.8 μg/g Cre) and five biomarkers (124 vs. 97.4 μg/g Cre) were found in urines of populations living in e-waste site compared to those in the reference site (p 
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2023.137747