Numerical iterative methods for Markovian dependability and performability models: new results and a comparison

In this paper we deal with iterative numerical methods to solve linear systems arising in continuous-time Markov chain (CTMC) models. We develop an algorithm to dynamically tune the relaxation parameter of the successive over-relaxation method. We give a sufficient condition for the Gauss–Seidel met...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Performance evaluation 2000-02, Vol.39 (1), p.99-125
Hauptverfasser: Suñé, Víctor, Domingo, José L., Carrasco, Juan A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we deal with iterative numerical methods to solve linear systems arising in continuous-time Markov chain (CTMC) models. We develop an algorithm to dynamically tune the relaxation parameter of the successive over-relaxation method. We give a sufficient condition for the Gauss–Seidel method to converge when computing the steady-state probability vector of a finite irreducible CTMC, and a sufficient condition for the generalized minimal residual projection method not to converge to the trivial solution 0 when computing that vector. Finally, we compare several splitting-based iterative methods and a variant of the generalized minimal residual projection method.
ISSN:0166-5316
1872-745X
DOI:10.1016/S0166-5316(99)00060-7