Numerical iterative methods for Markovian dependability and performability models: new results and a comparison
In this paper we deal with iterative numerical methods to solve linear systems arising in continuous-time Markov chain (CTMC) models. We develop an algorithm to dynamically tune the relaxation parameter of the successive over-relaxation method. We give a sufficient condition for the Gauss–Seidel met...
Gespeichert in:
Veröffentlicht in: | Performance evaluation 2000-02, Vol.39 (1), p.99-125 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we deal with iterative numerical methods to solve linear systems arising in continuous-time Markov chain (CTMC) models. We develop an algorithm to dynamically tune the relaxation parameter of the successive over-relaxation method. We give a sufficient condition for the Gauss–Seidel method to converge when computing the steady-state probability vector of a finite irreducible CTMC, and a sufficient condition for the generalized minimal residual projection method not to converge to the trivial solution
0 when computing that vector. Finally, we compare several splitting-based iterative methods and a variant of the generalized minimal residual projection method. |
---|---|
ISSN: | 0166-5316 1872-745X |
DOI: | 10.1016/S0166-5316(99)00060-7 |