In vitro fermentation of cereal dietary fibre carbohydrates by probiotic and intestinal bacteria

A range of probiotic and other intestinal bacteria were examined for their ability to ferment the dietary fibre carbohydrates β-glucan, xylan, xylo-oligosaccharides (XOS) and arabinoxylan. β-Glucan was fermented by Bacteroides spp and Clostridium beijerinckii but was not fermented by lactobacilli, b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the science of food and agriculture 2002-06, Vol.82 (8), p.781-789
Hauptverfasser: Crittenden, Ross, Karppinen, Sirpa, Ojanen, Suvi, Tenkanen, Maija, Fagerstrom, Richard, Matto, Jaana, Saarela, Maria, Mattila-Sandholm, Tiina, Poutanen, Kaisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A range of probiotic and other intestinal bacteria were examined for their ability to ferment the dietary fibre carbohydrates β-glucan, xylan, xylo-oligosaccharides (XOS) and arabinoxylan. β-Glucan was fermented by Bacteroides spp and Clostridium beijerinckii but was not fermented by lactobacilli, bifidobacteria, enterococci or Escherichia coli. Unsubstituted xylan was not fermented by any of the probiotic bacteria examined. However, many Bifidobacterium species and Lactobacillus brevis were able to grow to high yields using XOS. XOS were also efficiently fermented by some Bacteroides isolates but not by E coli, enterococci, Clostridium difficile, Clostridium perfringens or by the majority of intestinal Lactobacillus species examined. Bifidobacterium longum strains were able to grow well using arabinoxylan as the sole carbon source. These organisms hydrolysed and fermented the arabinosyl residues from arabinoxylan but did not substantially utilise the xylan backbone of the polysaccharide. Arabinoxylan was not fermented by lactobacilli, enterococci, E coli, C perfringens or C difficile and has potential to be an applicable carbohydrate to complement probiotic Bif longum strains in synbiotic combinations.
ISSN:0022-5142
1097-0010
DOI:10.1002/jsfa.1095