Machine learning concepts applied to oral pathology and oral medicine: A convolutional neural networks' approach
Introduction Artificial intelligence models and networks can learn and process dense information in a short time, leading to an efficient, objective, and accurate clinical and histopathological analysis, which can be useful to improve treatment modalities and prognostic outcomes. This paper targets...
Gespeichert in:
Veröffentlicht in: | Journal of oral pathology & medicine 2023-02, Vol.52 (2), p.109-118 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Introduction
Artificial intelligence models and networks can learn and process dense information in a short time, leading to an efficient, objective, and accurate clinical and histopathological analysis, which can be useful to improve treatment modalities and prognostic outcomes. This paper targets oral pathologists, oral medicinists, and head and neck surgeons to provide them with a theoretical and conceptual foundation of artificial intelligence‐based diagnostic approaches, with a special focus on convolutional neural networks, the state‐of‐the‐art in artificial intelligence and deep learning.
Methods
The authors conducted a literature review, and the convolutional neural network's conceptual foundations and functionality were illustrated based on a unique interdisciplinary point of view.
Conclusion
The development of artificial intelligence‐based models and computer vision methods for pattern recognition in clinical and histopathological image analysis of head and neck cancer has the potential to aid diagnosis and prognostic prediction. |
---|---|
ISSN: | 0904-2512 1600-0714 |
DOI: | 10.1111/jop.13397 |