Material property variations and defects of carbon/carbon brake disks monitored by ultrasonic methods

Several ultrasonic techniques were applied to carbon/carbon brake disks for the evaluation of spatial variations in material properties that are attributable to the manufacturing process. In a carbon/carbon brake disk manufactured by a combination of pitch impregnation and vapor infiltration methods...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites. Part B, Engineering Engineering, 2000, Vol.31 (8), p.707-713
Hauptverfasser: Im, K.-H, Hsu, D.K, Jeong, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Several ultrasonic techniques were applied to carbon/carbon brake disks for the evaluation of spatial variations in material properties that are attributable to the manufacturing process. In a carbon/carbon brake disk manufactured by a combination of pitch impregnation and vapor infiltration methods, the spatial variation of ultrasonic velocity was measured and found to be consistent with the nonuniform densification behavior in the manufacturing process. Low frequency (e.g. 1–5 MHz) through-transmission scans were used for mapping out the material property inhomogeneity. These results were compared with that obtained by dry-coupling ultrasonics. A good correlation was found between ultrasonic velocity and material density on a set of small blocks cut out of the disk. Pulse-echo C-Scans (10–25 MHz) were used to image near-surface material property anomalies associated with certain steps in the manufacturing process. Ultrasonic velocities in the in-plane directions were affected more by the relative contents of fabric and chopped fiber, and less by the void content.
ISSN:1359-8368
1879-1069
DOI:10.1016/S1359-8368(00)00019-6