Pulsed electric field-assisted esterification improves the freeze-thaw stability of corn starch gel by changing its molecular structure

The influence of pulsed electric field (PEF) combined with octenyl succinic anhydride (OSA) on the freeze-thaw stability of corn starch gel was investigated. After five freeze-thaw cycles, the syneresis value of OSA starch treated with PEF-assisted esterification for 15 min was lower by 29.5 %, whil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2023-03, Vol.231, p.123085-123085, Article 123085
Hauptverfasser: Chen, Bo-Ru, Teng, Yong-Xin, Wang, Lang-Hong, Xu, Fei-Yue, Li, Ying, Wen, Qing-Hui, Wang, Rui, Li, Jian, Wang, Zhen, Zeng, Xin-An
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The influence of pulsed electric field (PEF) combined with octenyl succinic anhydride (OSA) on the freeze-thaw stability of corn starch gel was investigated. After five freeze-thaw cycles, the syneresis value of OSA starch treated with PEF-assisted esterification for 15 min was lower by 29.5 %, while that of OSA starch without PEF treatment was lower by 10.17 %, compared to that of native starch. Low-field nuclear magnetic resonance data showed that the introduction of OSA groups greatly increased the water-holding capacity of starch. Results from differential scanning calorimetry (DSC) and X-ray diffraction (XRD) showed that the PEF-assisted esterification markedly hindered the re-formation of the helical structure of starch during freeze-thaw cycles. Moreover, PEF-assisted esterification improved the viscoelastic properties of the starch gel. It is found that the freeze-thaw stability of the PEF-modified starch depends not only on the degree of substitution but also on the starch molecular fine structure. PEF-assisted OSA starch with a high degree of substitution, a low content of amylose, and a high content of short amylopectin chains were found to have high freeze-thaw stability. This study shows that PEF-assisted esterification is a promising technique that should be used for preserving the quality of frozen foods. •PEF-assisted esterification enhanced the freeze-thaw stability of starch gel.•PEF-assisted esterification improved the water-holding capacity of starch gel.•Internal starch structural changes were correlated with the freeze-thaw stability.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2022.12.304