Nonstationary-state hidden Markov model representation of speech signals for speech enhancement
A novel formulation of the nonstationary-state hidden Markov model (NS-HMM), employed as the speech model and serving as the theoretical basis for the construction of a speech enhancement system, is presented in this paper. The NS-HMM is used as a compact, parametric model, generalized from the stat...
Gespeichert in:
Veröffentlicht in: | Signal processing 2002-02, Vol.82 (2), p.205-227 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 227 |
---|---|
container_issue | 2 |
container_start_page | 205 |
container_title | Signal processing |
container_volume | 82 |
creator | Sameti, Hossein Deng, Li |
description | A novel formulation of the nonstationary-state hidden Markov model (NS-HMM), employed as the speech model and serving as the theoretical basis for the construction of a speech enhancement system, is presented in this paper. The NS-HMM is used as a compact, parametric model, generalized from the stationary-state HMM, for describing clean speech statistics in the construction of the minimum mean-square-error (MMSE) speech enhancement system. The feature selection problem associated with the use of the NS-HMM in designing the speech enhancement system is addressed. The MMSE formulation is derived where the NS-HMM is used as the clean speech model and Gaussian-mixture, stationary-state HMM as the additive noise model. Speech enhancement experiments are conducted, demonstrating superiority of the NS-HMM over the stationary-state HMM in the speech enhancement performance for low SNRs. Detailed diagnostic analysis on the speech enhancement system's operation shows that the superiority arises from the ability of the NS-HMM to fit the spectral trajectory of the signal embedded in noise more closely than the stationary-state HMM. |
doi_str_mv | 10.1016/S0165-1684(01)00179-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27605057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165168401001797</els_id><sourcerecordid>27605057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-33d6c3db79f423e6d5307107992c67de8443a5641e325a749ac5a81701bc6d943</originalsourceid><addsrcrecordid>eNqFkM1OxCAURonRxHH0EUy60eiiCqVAuzJm4l8y6kJdEwZuHbQtFTqT-PZSO-rSDRA4916-g9AhwWcEE37-FBeWEl7kJ5icYkxEmYotNCGFyFLBmNhGk19kF-2F8IYjRTmeIPng2tCr3rpW-c90OEKytMZAm9wr_-7WSeMM1ImHzkOAdmQTVyWhA9DLJNjXVtUhqZz_uYJ2qVoNTaT30U4VX-Fgs0_Ry_XV8-w2nT_e3M0u56mmvOhTSg3X1CxEWeUZBW4YxYJgUZaZ5sJAkedUMZ4ToBlTIi-VZqogApOF5qbM6RQdj3077z5WEHrZ2KChrlULbhVkJjhmmIkIshHU3oXgoZKdt03MLgmWg075rVMOriQm8lunHOqONgNU0KqufExow18xZYRSMnzkYuQgpl1b8DJoC9GGsR50L42z_0z6Aih0ihs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27605057</pqid></control><display><type>article</type><title>Nonstationary-state hidden Markov model representation of speech signals for speech enhancement</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Sameti, Hossein ; Deng, Li</creator><creatorcontrib>Sameti, Hossein ; Deng, Li</creatorcontrib><description>A novel formulation of the nonstationary-state hidden Markov model (NS-HMM), employed as the speech model and serving as the theoretical basis for the construction of a speech enhancement system, is presented in this paper. The NS-HMM is used as a compact, parametric model, generalized from the stationary-state HMM, for describing clean speech statistics in the construction of the minimum mean-square-error (MMSE) speech enhancement system. The feature selection problem associated with the use of the NS-HMM in designing the speech enhancement system is addressed. The MMSE formulation is derived where the NS-HMM is used as the clean speech model and Gaussian-mixture, stationary-state HMM as the additive noise model. Speech enhancement experiments are conducted, demonstrating superiority of the NS-HMM over the stationary-state HMM in the speech enhancement performance for low SNRs. Detailed diagnostic analysis on the speech enhancement system's operation shows that the superiority arises from the ability of the NS-HMM to fit the spectral trajectory of the signal embedded in noise more closely than the stationary-state HMM.</description><identifier>ISSN: 0165-1684</identifier><identifier>EISSN: 1872-7557</identifier><identifier>DOI: 10.1016/S0165-1684(01)00179-7</identifier><identifier>CODEN: SPRODR</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Exact sciences and technology ; Information, signal and communications theory ; Minimum mean-square-error estimate ; Noise removal ; Nonstationary-state hidden Markov model ; Signal processing ; Speech enhancement ; Speech processing ; Telecommunications and information theory</subject><ispartof>Signal processing, 2002-02, Vol.82 (2), p.205-227</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-33d6c3db79f423e6d5307107992c67de8443a5641e325a749ac5a81701bc6d943</citedby><cites>FETCH-LOGICAL-c368t-33d6c3db79f423e6d5307107992c67de8443a5641e325a749ac5a81701bc6d943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0165-1684(01)00179-7$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27913,27914,45984</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13513314$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sameti, Hossein</creatorcontrib><creatorcontrib>Deng, Li</creatorcontrib><title>Nonstationary-state hidden Markov model representation of speech signals for speech enhancement</title><title>Signal processing</title><description>A novel formulation of the nonstationary-state hidden Markov model (NS-HMM), employed as the speech model and serving as the theoretical basis for the construction of a speech enhancement system, is presented in this paper. The NS-HMM is used as a compact, parametric model, generalized from the stationary-state HMM, for describing clean speech statistics in the construction of the minimum mean-square-error (MMSE) speech enhancement system. The feature selection problem associated with the use of the NS-HMM in designing the speech enhancement system is addressed. The MMSE formulation is derived where the NS-HMM is used as the clean speech model and Gaussian-mixture, stationary-state HMM as the additive noise model. Speech enhancement experiments are conducted, demonstrating superiority of the NS-HMM over the stationary-state HMM in the speech enhancement performance for low SNRs. Detailed diagnostic analysis on the speech enhancement system's operation shows that the superiority arises from the ability of the NS-HMM to fit the spectral trajectory of the signal embedded in noise more closely than the stationary-state HMM.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Minimum mean-square-error estimate</subject><subject>Noise removal</subject><subject>Nonstationary-state hidden Markov model</subject><subject>Signal processing</subject><subject>Speech enhancement</subject><subject>Speech processing</subject><subject>Telecommunications and information theory</subject><issn>0165-1684</issn><issn>1872-7557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OxCAURonRxHH0EUy60eiiCqVAuzJm4l8y6kJdEwZuHbQtFTqT-PZSO-rSDRA4916-g9AhwWcEE37-FBeWEl7kJ5icYkxEmYotNCGFyFLBmNhGk19kF-2F8IYjRTmeIPng2tCr3rpW-c90OEKytMZAm9wr_-7WSeMM1ImHzkOAdmQTVyWhA9DLJNjXVtUhqZz_uYJ2qVoNTaT30U4VX-Fgs0_Ry_XV8-w2nT_e3M0u56mmvOhTSg3X1CxEWeUZBW4YxYJgUZaZ5sJAkedUMZ4ToBlTIi-VZqogApOF5qbM6RQdj3077z5WEHrZ2KChrlULbhVkJjhmmIkIshHU3oXgoZKdt03MLgmWg075rVMOriQm8lunHOqONgNU0KqufExow18xZYRSMnzkYuQgpl1b8DJoC9GGsR50L42z_0z6Aih0ihs</recordid><startdate>20020201</startdate><enddate>20020201</enddate><creator>Sameti, Hossein</creator><creator>Deng, Li</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20020201</creationdate><title>Nonstationary-state hidden Markov model representation of speech signals for speech enhancement</title><author>Sameti, Hossein ; Deng, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-33d6c3db79f423e6d5307107992c67de8443a5641e325a749ac5a81701bc6d943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Minimum mean-square-error estimate</topic><topic>Noise removal</topic><topic>Nonstationary-state hidden Markov model</topic><topic>Signal processing</topic><topic>Speech enhancement</topic><topic>Speech processing</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sameti, Hossein</creatorcontrib><creatorcontrib>Deng, Li</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sameti, Hossein</au><au>Deng, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonstationary-state hidden Markov model representation of speech signals for speech enhancement</atitle><jtitle>Signal processing</jtitle><date>2002-02-01</date><risdate>2002</risdate><volume>82</volume><issue>2</issue><spage>205</spage><epage>227</epage><pages>205-227</pages><issn>0165-1684</issn><eissn>1872-7557</eissn><coden>SPRODR</coden><abstract>A novel formulation of the nonstationary-state hidden Markov model (NS-HMM), employed as the speech model and serving as the theoretical basis for the construction of a speech enhancement system, is presented in this paper. The NS-HMM is used as a compact, parametric model, generalized from the stationary-state HMM, for describing clean speech statistics in the construction of the minimum mean-square-error (MMSE) speech enhancement system. The feature selection problem associated with the use of the NS-HMM in designing the speech enhancement system is addressed. The MMSE formulation is derived where the NS-HMM is used as the clean speech model and Gaussian-mixture, stationary-state HMM as the additive noise model. Speech enhancement experiments are conducted, demonstrating superiority of the NS-HMM over the stationary-state HMM in the speech enhancement performance for low SNRs. Detailed diagnostic analysis on the speech enhancement system's operation shows that the superiority arises from the ability of the NS-HMM to fit the spectral trajectory of the signal embedded in noise more closely than the stationary-state HMM.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0165-1684(01)00179-7</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-1684 |
ispartof | Signal processing, 2002-02, Vol.82 (2), p.205-227 |
issn | 0165-1684 1872-7557 |
language | eng |
recordid | cdi_proquest_miscellaneous_27605057 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Applied sciences Exact sciences and technology Information, signal and communications theory Minimum mean-square-error estimate Noise removal Nonstationary-state hidden Markov model Signal processing Speech enhancement Speech processing Telecommunications and information theory |
title | Nonstationary-state hidden Markov model representation of speech signals for speech enhancement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A06%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonstationary-state%20hidden%20Markov%20model%20representation%20of%20speech%20signals%20for%20speech%20enhancement&rft.jtitle=Signal%20processing&rft.au=Sameti,%20Hossein&rft.date=2002-02-01&rft.volume=82&rft.issue=2&rft.spage=205&rft.epage=227&rft.pages=205-227&rft.issn=0165-1684&rft.eissn=1872-7557&rft.coden=SPRODR&rft_id=info:doi/10.1016/S0165-1684(01)00179-7&rft_dat=%3Cproquest_cross%3E27605057%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27605057&rft_id=info:pmid/&rft_els_id=S0165168401001797&rfr_iscdi=true |