Nonstationary-state hidden Markov model representation of speech signals for speech enhancement

A novel formulation of the nonstationary-state hidden Markov model (NS-HMM), employed as the speech model and serving as the theoretical basis for the construction of a speech enhancement system, is presented in this paper. The NS-HMM is used as a compact, parametric model, generalized from the stat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal processing 2002-02, Vol.82 (2), p.205-227
Hauptverfasser: Sameti, Hossein, Deng, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel formulation of the nonstationary-state hidden Markov model (NS-HMM), employed as the speech model and serving as the theoretical basis for the construction of a speech enhancement system, is presented in this paper. The NS-HMM is used as a compact, parametric model, generalized from the stationary-state HMM, for describing clean speech statistics in the construction of the minimum mean-square-error (MMSE) speech enhancement system. The feature selection problem associated with the use of the NS-HMM in designing the speech enhancement system is addressed. The MMSE formulation is derived where the NS-HMM is used as the clean speech model and Gaussian-mixture, stationary-state HMM as the additive noise model. Speech enhancement experiments are conducted, demonstrating superiority of the NS-HMM over the stationary-state HMM in the speech enhancement performance for low SNRs. Detailed diagnostic analysis on the speech enhancement system's operation shows that the superiority arises from the ability of the NS-HMM to fit the spectral trajectory of the signal embedded in noise more closely than the stationary-state HMM.
ISSN:0165-1684
1872-7557
DOI:10.1016/S0165-1684(01)00179-7