On the size of the Durfee square of a random integer partition

We prove a local limit theorem for the length of the side of the Durfee square in a random partition of a positive integer n as n→∞. We rely our asymptotic analysis on the power series expansion of x m 2 ∏ j=1 m (1− x j ) −2 whose coefficient of x n equals the number of partitions of n in which the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2002-05, Vol.142 (1), p.173-184
1. Verfasser: Mutafchiev, Ljuben R.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a local limit theorem for the length of the side of the Durfee square in a random partition of a positive integer n as n→∞. We rely our asymptotic analysis on the power series expansion of x m 2 ∏ j=1 m (1− x j ) −2 whose coefficient of x n equals the number of partitions of n in which the Durfee square is m 2.
ISSN:0377-0427
1879-1778
DOI:10.1016/S0377-0427(01)00467-8