Hydrogen-substituted graphdiyne-assisted ultrafast sparking synthesis of metastable nanomaterials

Metastable nanomaterials, such as single-atom and high-entropy systems, with exciting physical and chemical properties are increasingly important for next-generation technologies. Here, we developed a hydrogen-substituted graphdiyne-assisted ultrafast sparking synthesis (GAUSS) platform for the prep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2023-02, Vol.18 (2), p.153-159
Hauptverfasser: Zheng, Xueli, Gao, Xin, Vilá, Rafael A., Jiang, Yue, Wang, Jingyang, Xu, Rong, Zhang, Rui, Xiao, Xin, Zhang, Pu, Greenburg, Louisa C., Yang, Yufei, Xin, Huolin L., Zheng, Xiaolin, Cui, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metastable nanomaterials, such as single-atom and high-entropy systems, with exciting physical and chemical properties are increasingly important for next-generation technologies. Here, we developed a hydrogen-substituted graphdiyne-assisted ultrafast sparking synthesis (GAUSS) platform for the preparation of metastable nanomaterials. The GAUSS platform can reach an ultra-high reaction temperature of 3,286 K within 8 ms, a rate exceeding 10 5  K s −1 . Controlling the composition and chemistry of the hydrogen-substituted graphdiyne aerogel framework, the reaction temperature can be tuned from 1,640 K to 3,286 K. We demonstrate the versatility of the GAUSS platform with the successful synthesis of single atoms, high-entropy alloys and high-entropy oxides. Electrochemical measurements and density functional theory show that single atoms synthesized by GAUSS enhance the lithium–sulfur redox reaction kinetics in all-solid-state lithium–sulfur batteries. Our design of the GAUSS platform offers a powerful way to synthesize a variety of metastable nanomaterials. A graphdiyne-assisted ultrafast sparking synthesis platform is developed to synthesize a group of metastable nanomaterials, including single-atom materials, high-entropy alloys and high-entropy oxides.
ISSN:1748-3387
1748-3395
DOI:10.1038/s41565-022-01272-4