Direct Quantitative Analysis of Fluorine in Solid Samples by Cryogenic Laser Ablation and Ionization Time-of-Flight Mass Spectrometry

The determination of fluorine, the lightest element in halogens, suffers from high ionization potential and spectral interference from water molecules in mass spectrometry. Herein, we introduced a liquid nitrogen cooling unit into the laser ablation and ionization source for the first time to constr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2023-01, Vol.95 (2), p.1428-1435
Hauptverfasser: Zhang, Zhenjian, Ma, Siyuan, Hang, Le, Xu, Zhouyi, Hang, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The determination of fluorine, the lightest element in halogens, suffers from high ionization potential and spectral interference from water molecules in mass spectrometry. Herein, we introduced a liquid nitrogen cooling unit into the laser ablation and ionization source for the first time to construct a cryogenic laser ablation and ionization time-of-flight mass spectrometry (Cryo-LAI-TOFMS) system. With this system, the interference of water-related species at m/z 19 was effectively eliminated, and fluorine atomization and ionization efficiency could reach 6.3%. A direct quantitative analysis method was developed to determine fluorine contents in phosphate rock, copper ore, industrial byproduct gypsum, stream sediment, and soil. Considering the simplicity, high sensitivity, and low spectral interference of this technique, it can be extended to the determination of fluorine content as low as μg/g in complex solid samples.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.2c04372