Formation of multicellular colonies by choanoflagellates increases susceptibility to capture by amoeboid predators

Many heterotrophic microbial eukaryotes are size‐selective feeders. Some microorganisms increase their size by forming multicellular colonies. We used choanoflagellates, Salpingoeca helianthica, which can be unicellular or form multicellular colonies, to study the effects of multicellularity on vuln...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of eukaryotic microbiology 2023-05, Vol.70 (3), p.e12961-n/a
Hauptverfasser: Chin, Nicole E., Wu, Tiffany C., O'Toole, J. Michael, Xu, Kevin, Hata, Tom, Koehl, Mimi A. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many heterotrophic microbial eukaryotes are size‐selective feeders. Some microorganisms increase their size by forming multicellular colonies. We used choanoflagellates, Salpingoeca helianthica, which can be unicellular or form multicellular colonies, to study the effects of multicellularity on vulnerability to predation by the raptorial protozoan predator, Amoeba proteus, which captures prey with pseudopodia. Videomicrography used to measure the behavior of interacting S. helianthica and A. proteus revealed that large choanoflagellate colonies were more susceptible to capture than were small colonies or single cells. Swimming colonies produced larger flow fields than did swimming unicellular choanoflagellates, and the distance of S. helianthica from A. proteus when pseudopod formation started was greater for colonies than for single cells. Prey size did not affect the number of pseudopodia formed and the time between their formation, pulsatile kinematics and speed of extension by pseudopodia, or percent of prey lost by the predator. S. helianthica did not change swimming speed or execute escape maneuvers in response to being pursued by pseudopodia, so size‐selective feeding by A. proteus was due to predator behavior rather than prey escape. Our results do not support the theory that the selective advantage of becoming multicellular by choanoflagellate‐like ancestors of animals was reduced susceptibility to protozoan predation.
ISSN:1066-5234
1550-7408
DOI:10.1111/jeu.12961