Fiber direction estimation using constrained spherical deconvolution based on multi-model response function

Constrained spherical deconvolution can quantify white matter fiber orientation distribution information from diffusion magnetic resonance imaging data. But this method is only applicable to single shell diffusion magnetic resonance imaging data and will provide wrong fiber orientation information i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sheng wu yi xue gong cheng xue za zhi 2022-12, Vol.39 (6), p.1117-1126
Hauptverfasser: Pan, Yingyu, Wang, Yuanjun
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1126
container_issue 6
container_start_page 1117
container_title Sheng wu yi xue gong cheng xue za zhi
container_volume 39
creator Pan, Yingyu
Wang, Yuanjun
description Constrained spherical deconvolution can quantify white matter fiber orientation distribution information from diffusion magnetic resonance imaging data. But this method is only applicable to single shell diffusion magnetic resonance imaging data and will provide wrong fiber orientation information in white matter tissue which contains isotropic diffusion signals. To solve these problems, this paper proposes a constrained spherical deconvolution method based on multi-model response function. Multi-shell data can improve the stability of fiber orientation, and multi-model response function can attenuate isotropic diffusion signals in white matter, providing more accurate fiber orientation information. Synthetic data and real brain data from public database were used to verify the effectiveness of this algorithm. The results demonstrate that the proposed algorithm can attenuate isotropic diffusion signals in white matter and overcome the influence of partial volume effect on fiber direction estimation, thus esti
doi_str_mv 10.7507/1001-5515.202202034
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2759001873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2759001873</sourcerecordid><originalsourceid>FETCH-LOGICAL-p154t-a2dd55716a1a27ce1f3fae79e2783b628cab8df1d7534dd15547efa0edadea8a3</originalsourceid><addsrcrecordid>eNpdkEtLAzEQx3NQbKn9BIIsePGyNY_No0cptgoFL3peZjezGt2XyUbw2xtq9SAMzDDzm9efkAtGV1pSfcMoZbmUTK445cmoKE7I_C87I8sQXEUpN1QpI87ITCiZOg2dk_etq9Bn1nmsJzf0GYbJdXAIY3D9S1YPfZg8uB5tFsZX9K6GNrOY8p9DGw9kBSFVU9DFdnJ5N1hsM49hTL2YNbE_zD4npw20AZdHvyDP27unzX2-f9w9bG73-chkMeXArZVSMwUMuK6RNaIB1Gvk2ohKcVNDZWzDrJaisJZJWWhsgKIFi2BALMj1z9zRDx8xPVR2LtTYttDjEEPJtVwncYwWCb36h74N0ffpukQplRYKVSTq8kjFqkNbjj5J5L_KXxnFN8egdpU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766783364</pqid></control><display><type>article</type><title>Fiber direction estimation using constrained spherical deconvolution based on multi-model response function</title><source>MEDLINE</source><source>PubMed Central</source><creator>Pan, Yingyu ; Wang, Yuanjun</creator><creatorcontrib>Pan, Yingyu ; Wang, Yuanjun</creatorcontrib><description>Constrained spherical deconvolution can quantify white matter fiber orientation distribution information from diffusion magnetic resonance imaging data. But this method is only applicable to single shell diffusion magnetic resonance imaging data and will provide wrong fiber orientation information in white matter tissue which contains isotropic diffusion signals. To solve these problems, this paper proposes a constrained spherical deconvolution method based on multi-model response function. Multi-shell data can improve the stability of fiber orientation, and multi-model response function can attenuate isotropic diffusion signals in white matter, providing more accurate fiber orientation information. Synthetic data and real brain data from public database were used to verify the effectiveness of this algorithm. The results demonstrate that the proposed algorithm can attenuate isotropic diffusion signals in white matter and overcome the influence of partial volume effect on fiber direction estimation, thus esti</description><identifier>ISSN: 1001-5515</identifier><identifier>DOI: 10.7507/1001-5515.202202034</identifier><identifier>PMID: 36575080</identifier><language>chi</language><publisher>China: Sichuan Society for Biomedical Engineering</publisher><subject>Algorithms ; Brain ; Databases, Factual ; Deconvolution ; Diffusion ; Diffusion Magnetic Resonance Imaging - methods ; Fiber orientation ; Image Processing, Computer-Assisted - methods ; Magnetic resonance imaging ; Medical imaging ; Neuroimaging ; Resonance ; Response functions ; Substantia alba ; White Matter - diagnostic imaging</subject><ispartof>Sheng wu yi xue gong cheng xue za zhi, 2022-12, Vol.39 (6), p.1117-1126</ispartof><rights>Copyright Sichuan Society for Biomedical Engineering 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36575080$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, Yingyu</creatorcontrib><creatorcontrib>Wang, Yuanjun</creatorcontrib><title>Fiber direction estimation using constrained spherical deconvolution based on multi-model response function</title><title>Sheng wu yi xue gong cheng xue za zhi</title><addtitle>Sheng Wu Yi Xue Gong Cheng Xue Za Zhi</addtitle><description>Constrained spherical deconvolution can quantify white matter fiber orientation distribution information from diffusion magnetic resonance imaging data. But this method is only applicable to single shell diffusion magnetic resonance imaging data and will provide wrong fiber orientation information in white matter tissue which contains isotropic diffusion signals. To solve these problems, this paper proposes a constrained spherical deconvolution method based on multi-model response function. Multi-shell data can improve the stability of fiber orientation, and multi-model response function can attenuate isotropic diffusion signals in white matter, providing more accurate fiber orientation information. Synthetic data and real brain data from public database were used to verify the effectiveness of this algorithm. The results demonstrate that the proposed algorithm can attenuate isotropic diffusion signals in white matter and overcome the influence of partial volume effect on fiber direction estimation, thus esti</description><subject>Algorithms</subject><subject>Brain</subject><subject>Databases, Factual</subject><subject>Deconvolution</subject><subject>Diffusion</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>Fiber orientation</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Neuroimaging</subject><subject>Resonance</subject><subject>Response functions</subject><subject>Substantia alba</subject><subject>White Matter - diagnostic imaging</subject><issn>1001-5515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkEtLAzEQx3NQbKn9BIIsePGyNY_No0cptgoFL3peZjezGt2XyUbw2xtq9SAMzDDzm9efkAtGV1pSfcMoZbmUTK445cmoKE7I_C87I8sQXEUpN1QpI87ITCiZOg2dk_etq9Bn1nmsJzf0GYbJdXAIY3D9S1YPfZg8uB5tFsZX9K6GNrOY8p9DGw9kBSFVU9DFdnJ5N1hsM49hTL2YNbE_zD4npw20AZdHvyDP27unzX2-f9w9bG73-chkMeXArZVSMwUMuK6RNaIB1Gvk2ohKcVNDZWzDrJaisJZJWWhsgKIFi2BALMj1z9zRDx8xPVR2LtTYttDjEEPJtVwncYwWCb36h74N0ffpukQplRYKVSTq8kjFqkNbjj5J5L_KXxnFN8egdpU</recordid><startdate>20221225</startdate><enddate>20221225</enddate><creator>Pan, Yingyu</creator><creator>Wang, Yuanjun</creator><general>Sichuan Society for Biomedical Engineering</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20221225</creationdate><title>Fiber direction estimation using constrained spherical deconvolution based on multi-model response function</title><author>Pan, Yingyu ; Wang, Yuanjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p154t-a2dd55716a1a27ce1f3fae79e2783b628cab8df1d7534dd15547efa0edadea8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Brain</topic><topic>Databases, Factual</topic><topic>Deconvolution</topic><topic>Diffusion</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>Fiber orientation</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Neuroimaging</topic><topic>Resonance</topic><topic>Response functions</topic><topic>Substantia alba</topic><topic>White Matter - diagnostic imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Pan, Yingyu</creatorcontrib><creatorcontrib>Wang, Yuanjun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Sheng wu yi xue gong cheng xue za zhi</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Yingyu</au><au>Wang, Yuanjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fiber direction estimation using constrained spherical deconvolution based on multi-model response function</atitle><jtitle>Sheng wu yi xue gong cheng xue za zhi</jtitle><addtitle>Sheng Wu Yi Xue Gong Cheng Xue Za Zhi</addtitle><date>2022-12-25</date><risdate>2022</risdate><volume>39</volume><issue>6</issue><spage>1117</spage><epage>1126</epage><pages>1117-1126</pages><issn>1001-5515</issn><abstract>Constrained spherical deconvolution can quantify white matter fiber orientation distribution information from diffusion magnetic resonance imaging data. But this method is only applicable to single shell diffusion magnetic resonance imaging data and will provide wrong fiber orientation information in white matter tissue which contains isotropic diffusion signals. To solve these problems, this paper proposes a constrained spherical deconvolution method based on multi-model response function. Multi-shell data can improve the stability of fiber orientation, and multi-model response function can attenuate isotropic diffusion signals in white matter, providing more accurate fiber orientation information. Synthetic data and real brain data from public database were used to verify the effectiveness of this algorithm. The results demonstrate that the proposed algorithm can attenuate isotropic diffusion signals in white matter and overcome the influence of partial volume effect on fiber direction estimation, thus esti</abstract><cop>China</cop><pub>Sichuan Society for Biomedical Engineering</pub><pmid>36575080</pmid><doi>10.7507/1001-5515.202202034</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1001-5515
ispartof Sheng wu yi xue gong cheng xue za zhi, 2022-12, Vol.39 (6), p.1117-1126
issn 1001-5515
language chi
recordid cdi_proquest_miscellaneous_2759001873
source MEDLINE; PubMed Central
subjects Algorithms
Brain
Databases, Factual
Deconvolution
Diffusion
Diffusion Magnetic Resonance Imaging - methods
Fiber orientation
Image Processing, Computer-Assisted - methods
Magnetic resonance imaging
Medical imaging
Neuroimaging
Resonance
Response functions
Substantia alba
White Matter - diagnostic imaging
title Fiber direction estimation using constrained spherical deconvolution based on multi-model response function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A00%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fiber%20direction%20estimation%20using%20constrained%20spherical%20deconvolution%20based%20on%20multi-model%20response%20function&rft.jtitle=Sheng%20wu%20yi%20xue%20gong%20cheng%20xue%20za%20zhi&rft.au=Pan,%20Yingyu&rft.date=2022-12-25&rft.volume=39&rft.issue=6&rft.spage=1117&rft.epage=1126&rft.pages=1117-1126&rft.issn=1001-5515&rft_id=info:doi/10.7507/1001-5515.202202034&rft_dat=%3Cproquest_pubme%3E2759001873%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2766783364&rft_id=info:pmid/36575080&rfr_iscdi=true