Fiber direction estimation using constrained spherical deconvolution based on multi-model response function
Constrained spherical deconvolution can quantify white matter fiber orientation distribution information from diffusion magnetic resonance imaging data. But this method is only applicable to single shell diffusion magnetic resonance imaging data and will provide wrong fiber orientation information i...
Gespeichert in:
Veröffentlicht in: | Sheng wu yi xue gong cheng xue za zhi 2022-12, Vol.39 (6), p.1117-1126 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Constrained spherical deconvolution can quantify white matter fiber orientation distribution information from diffusion magnetic resonance imaging data. But this method is only applicable to single shell diffusion magnetic resonance imaging data and will provide wrong fiber orientation information in white matter tissue which contains isotropic diffusion signals. To solve these problems, this paper proposes a constrained spherical deconvolution method based on multi-model response function. Multi-shell data can improve the stability of fiber orientation, and multi-model response function can attenuate isotropic diffusion signals in white matter, providing more accurate fiber orientation information. Synthetic data and real brain data from public database were used to verify the effectiveness of this algorithm. The results demonstrate that the proposed algorithm can attenuate isotropic diffusion signals in white matter and overcome the influence of partial volume effect on fiber direction estimation, thus esti |
---|---|
ISSN: | 1001-5515 |
DOI: | 10.7507/1001-5515.202202034 |