Novel Strategy of Polymers in Combination with Silica Particles for Reversible Control of Oil–Water Interface

Hybrid smart emulsification systems are highly applicable in manipulating oil-in-water (O/W) droplets. Herein, novel switchable block polymers containing both zwitterionic and tertiary amine pendent groups were designed and synthesized to combine with charged silica particles to stabilize the O/W em...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-01, Vol.15 (1), p.2216-2227
Hauptverfasser: Ma, Hao, Xia, Shuqian, Sun, Caixia, Yu, Fuce, Cameron, Alexandre, Zheng, Wangang, Shu, Qinglin, Pei, Haihua, Han, You
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hybrid smart emulsification systems are highly applicable in manipulating oil-in-water (O/W) droplets. Herein, novel switchable block polymers containing both zwitterionic and tertiary amine pendent groups were designed and synthesized to combine with charged silica particles to stabilize the O/W emulsion responsive to pH. This study was carried out in O/W emulsions stabilized with the polymer and silica particles under different pH conditions. The emulsion system was also simulated using molecular dynamics simulation to reveal the mechanism at molecular levels, thus gaining insight into the relationships between the emulsifying properties and the molecular interaction of the mixed system. Upon acidification of the continuous aqueous phase, protonated polymers with excellent hydrophilicity were induced by charged silica particles to cause rapid emulsion coalescence. In alkaline media, the mixed system conversely stabilized the O/W emulsions, cutting polymer consumption by over three-quarters. The emulsification and demulsification can be switched alternately by tuning the pH conditions. The applications exhibited excellent efficiency in separating heavy oil/water emulsions and proved the high conversion rate in emulsion polymerization. Overall, with this novel strategy to relieve tedious modifications on particle surfaces and massive consumption of polymers, the designed responsive emulsification systems can impart intelligent and controllable chemical reactivity to emulsions on demand in a more affordable and sustainable way.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.2c19037