First Report of Neopestalotiopsis piceana Causing Gray Blight in Camellia sinensis L. in China

Tea plants (Camellia sinensis L.) are an important cash crop and are cultivated worldwide for their commercial value (Palanisamy et al. 2014). Tea gray blight is an important tea plant disease as it can cause a decline in tea quality and reduce yields by 20-30% (Sanjay et al. 2008). In August 2018,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant disease 2022-12
Hauptverfasser: Wang, Qiao Mei, Yang, Ruijuan, Yang, Yanmei, Lv, Jie, Peng, Wenshu, Yan, Liang, Hu, Xianqi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tea plants (Camellia sinensis L.) are an important cash crop and are cultivated worldwide for their commercial value (Palanisamy et al. 2014). Tea gray blight is an important tea plant disease as it can cause a decline in tea quality and reduce yields by 20-30% (Sanjay et al. 2008). In August 2018, a disease survey was conducted on 400 ha of organic tea plantations in the Pu'er area of Yunnan Province (22.48° N, 100.58° E). The survey found that widespread disease was causing damage to 40% of the tea plantations and that the most seriously affected tea variety was Yunkang No. 10, which had an average disease incidence of 30-35%. The affected leaves grew small yellow-green spots on their tips or margins in the early stage that expanded into round or irregular brown spots with distinct concentric whorls and black conidial disks arranged in whorls when the humidity was high (Fig. 1A-B), which is consistent with tea gray blight disease (Zheng et al. 2021). Twenty-four diseased leaf samples were collected from four different tea plantations and transported to the Pu-Erh Tea Research Laboratory. Leaves with disease spots were cut into 4 mm ×4 mm square pieces, surface-sterilized with 75% alcohol for 1 min, disinfected with 1% sodium hypochlorite for 3 min, and washed thrice with sterile water. The tissue pieces were placed on potato dextrose agar (PDA) plates containing 100 µg ml-1 of chloramphenicol (Wang et al. 2021). After 3 d of culturing in the dark at 28 C, twenty pure cultures with similar morphology were obtained, and two representative isolates were selected and transferred into new PDA media. After 7 d, circular fungal colonies with dense aerial mycelium produced black, wet spore masses that grew on the PDA media (Fig. 1C-D). The conidia were spindle-shaped with four septa, measuring 25.0 (21.0-26.0) × 6.0 (4.5-7.0) µm (n=15). The conidia had three median cells, two of which were dark brown in color with unclear separations, with a single basal hyaline appendage 3.8 (3.5-4.5) µm (n=30) in length and 2-3 apical hyaline appendages 31 (27-35) µm in length (n=30) (Fig. 1E), similar to the conidial characteristics of Neopestalotiopsis piceana (Maharachchikumbura et al. 2014). Two isolates were selected for DNA extraction. The internal transcribed spacer (ITS) region, partial translation elongation factor 1-alpha (tef1-α) gene, and partial β-tubulin (tub2) gene were amplified using the ITS1F-ITS4 primer set (White et al 1990), the EF-1α-F and EF-1α-R primer
ISSN:0191-2917
DOI:10.1094/PDIS-07-22-1721-PDN