Tracing weak neuron fibers

Abstract Motivation Precise reconstruction of neuronal arbors is important for circuitry mapping. Many auto-tracing algorithms have been developed toward full reconstruction. However, it is still challenging to trace the weak signals of neurite fibers that often correspond to axons. Results We propo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics (Oxford, England) England), 2023-01, Vol.39 (1)
Hauptverfasser: Liu, Yufeng, Zhong, Ye, Zhao, Xuan, Liu, Lijuan, Ding, Liya, Peng, Hanchuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Bioinformatics (Oxford, England)
container_volume 39
creator Liu, Yufeng
Zhong, Ye
Zhao, Xuan
Liu, Lijuan
Ding, Liya
Peng, Hanchuan
description Abstract Motivation Precise reconstruction of neuronal arbors is important for circuitry mapping. Many auto-tracing algorithms have been developed toward full reconstruction. However, it is still challenging to trace the weak signals of neurite fibers that often correspond to axons. Results We proposed a method, named the NeuMiner, for tracing weak fibers by combining two strategies: an online sample mining strategy and a modified gamma transformation. NeuMiner improved the recall of weak signals (voxel values
doi_str_mv 10.1093/bioinformatics/btac816
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2758356341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btac816</oup_id><sourcerecordid>3133523456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-f9ed4e4ba140c086a2ca11bc7f3354fef6dd1481a3cf316c10f3e106d74fec183</originalsourceid><addsrcrecordid>eNqNkE9LxDAQxYMo7rr6BTwsC1681M100rQ9yuI_WPCynkOaJpK1bdakRfz2Rrou6MnTDMzvvXk8QuZAb4CWuKyss51xvpW9VWFZ9VIVwI_IFJDnCSsAjg87xQk5C2FLKc1oxk_JBHmWA8vLKbnceKls97r40PJt0enBu25hbKV9OCcnRjZBX-znjLzc321Wj8n6-eFpdbtOFEvLPjGlrplmlQRGFS24TJUEqFRuEDNmtOF1DTGQRGUQuAJqUAPldR6PCgqckevRd-fd-6BDL1oblG4a2Wk3BJHmWYEZRwYRvfqDbt3gu5hOIMR3KbIIzggfKeVdCF4bsfO2lf5TABXf7Ynf7Yl9e1E439sPVavrg-ynrgjACLhh91_TL0o5gMM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133523456</pqid></control><display><type>article</type><title>Tracing weak neuron fibers</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Liu, Yufeng ; Zhong, Ye ; Zhao, Xuan ; Liu, Lijuan ; Ding, Liya ; Peng, Hanchuan</creator><creatorcontrib>Liu, Yufeng ; Zhong, Ye ; Zhao, Xuan ; Liu, Lijuan ; Ding, Liya ; Peng, Hanchuan</creatorcontrib><description>Abstract Motivation Precise reconstruction of neuronal arbors is important for circuitry mapping. Many auto-tracing algorithms have been developed toward full reconstruction. However, it is still challenging to trace the weak signals of neurite fibers that often correspond to axons. Results We proposed a method, named the NeuMiner, for tracing weak fibers by combining two strategies: an online sample mining strategy and a modified gamma transformation. NeuMiner improved the recall of weak signals (voxel values &lt;20) by a large margin, from 5.1 to 27.8%. This is prominent for axons, which increased by 6.4 times, compared to 2.0 times for dendrites. Both strategies were shown to be beneficial for weak fiber recognition, and they reduced the average axonal spatial distances to gold standards by 46 and 13%, respectively. The improvement was observed on two prevalent automatic tracing algorithms and can be applied to any other tracers and image types. Availability and implementation Source codes of NeuMiner are freely available on GitHub (https://github.com/crazylyf/neuronet/tree/semantic_fnm). Image visualization, preprocessing and tracing are conducted on the Vaa3D platform, which is accessible at the Vaa3D GitHub repository (https://github.com/Vaa3D). All training and testing images are cropped from high-resolution fMOST mouse brains downloaded from the Brain Image Library (https://www.brainimagelibrary.org/), and the corresponding gold standards are available at https://doi.brainimagelibrary.org/doi/10.35077/g.25. Supplementary information Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btac816</identifier><identifier>PMID: 36571479</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Animals ; Availability ; Axons ; Bioinformatics ; Brain ; Circuits ; Fibers ; Image resolution ; Mice ; Neurites ; Neuroimaging ; Neurons ; Reconstruction ; Software ; Tracing</subject><ispartof>Bioinformatics (Oxford, England), 2023-01, Vol.39 (1)</ispartof><rights>The Author(s) 2022. Published by Oxford University Press. 2022</rights><rights>The Author(s) 2022. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-f9ed4e4ba140c086a2ca11bc7f3354fef6dd1481a3cf316c10f3e106d74fec183</citedby><cites>FETCH-LOGICAL-c429t-f9ed4e4ba140c086a2ca11bc7f3354fef6dd1481a3cf316c10f3e106d74fec183</cites><orcidid>0000-0003-0848-5113 ; 0000-0002-1209-875X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36571479$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yufeng</creatorcontrib><creatorcontrib>Zhong, Ye</creatorcontrib><creatorcontrib>Zhao, Xuan</creatorcontrib><creatorcontrib>Liu, Lijuan</creatorcontrib><creatorcontrib>Ding, Liya</creatorcontrib><creatorcontrib>Peng, Hanchuan</creatorcontrib><title>Tracing weak neuron fibers</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Abstract Motivation Precise reconstruction of neuronal arbors is important for circuitry mapping. Many auto-tracing algorithms have been developed toward full reconstruction. However, it is still challenging to trace the weak signals of neurite fibers that often correspond to axons. Results We proposed a method, named the NeuMiner, for tracing weak fibers by combining two strategies: an online sample mining strategy and a modified gamma transformation. NeuMiner improved the recall of weak signals (voxel values &lt;20) by a large margin, from 5.1 to 27.8%. This is prominent for axons, which increased by 6.4 times, compared to 2.0 times for dendrites. Both strategies were shown to be beneficial for weak fiber recognition, and they reduced the average axonal spatial distances to gold standards by 46 and 13%, respectively. The improvement was observed on two prevalent automatic tracing algorithms and can be applied to any other tracers and image types. Availability and implementation Source codes of NeuMiner are freely available on GitHub (https://github.com/crazylyf/neuronet/tree/semantic_fnm). Image visualization, preprocessing and tracing are conducted on the Vaa3D platform, which is accessible at the Vaa3D GitHub repository (https://github.com/Vaa3D). All training and testing images are cropped from high-resolution fMOST mouse brains downloaded from the Brain Image Library (https://www.brainimagelibrary.org/), and the corresponding gold standards are available at https://doi.brainimagelibrary.org/doi/10.35077/g.25. Supplementary information Supplementary data are available at Bioinformatics online.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Availability</subject><subject>Axons</subject><subject>Bioinformatics</subject><subject>Brain</subject><subject>Circuits</subject><subject>Fibers</subject><subject>Image resolution</subject><subject>Mice</subject><subject>Neurites</subject><subject>Neuroimaging</subject><subject>Neurons</subject><subject>Reconstruction</subject><subject>Software</subject><subject>Tracing</subject><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkE9LxDAQxYMo7rr6BTwsC1681M100rQ9yuI_WPCynkOaJpK1bdakRfz2Rrou6MnTDMzvvXk8QuZAb4CWuKyss51xvpW9VWFZ9VIVwI_IFJDnCSsAjg87xQk5C2FLKc1oxk_JBHmWA8vLKbnceKls97r40PJt0enBu25hbKV9OCcnRjZBX-znjLzc321Wj8n6-eFpdbtOFEvLPjGlrplmlQRGFS24TJUEqFRuEDNmtOF1DTGQRGUQuAJqUAPldR6PCgqckevRd-fd-6BDL1oblG4a2Wk3BJHmWYEZRwYRvfqDbt3gu5hOIMR3KbIIzggfKeVdCF4bsfO2lf5TABXf7Ynf7Yl9e1E439sPVavrg-ynrgjACLhh91_TL0o5gMM</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Liu, Yufeng</creator><creator>Zhong, Ye</creator><creator>Zhao, Xuan</creator><creator>Liu, Lijuan</creator><creator>Ding, Liya</creator><creator>Peng, Hanchuan</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0848-5113</orcidid><orcidid>https://orcid.org/0000-0002-1209-875X</orcidid></search><sort><creationdate>20230101</creationdate><title>Tracing weak neuron fibers</title><author>Liu, Yufeng ; Zhong, Ye ; Zhao, Xuan ; Liu, Lijuan ; Ding, Liya ; Peng, Hanchuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-f9ed4e4ba140c086a2ca11bc7f3354fef6dd1481a3cf316c10f3e106d74fec183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Availability</topic><topic>Axons</topic><topic>Bioinformatics</topic><topic>Brain</topic><topic>Circuits</topic><topic>Fibers</topic><topic>Image resolution</topic><topic>Mice</topic><topic>Neurites</topic><topic>Neuroimaging</topic><topic>Neurons</topic><topic>Reconstruction</topic><topic>Software</topic><topic>Tracing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yufeng</creatorcontrib><creatorcontrib>Zhong, Ye</creatorcontrib><creatorcontrib>Zhao, Xuan</creatorcontrib><creatorcontrib>Liu, Lijuan</creatorcontrib><creatorcontrib>Ding, Liya</creatorcontrib><creatorcontrib>Peng, Hanchuan</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yufeng</au><au>Zhong, Ye</au><au>Zhao, Xuan</au><au>Liu, Lijuan</au><au>Ding, Liya</au><au>Peng, Hanchuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracing weak neuron fibers</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>39</volume><issue>1</issue><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>Abstract Motivation Precise reconstruction of neuronal arbors is important for circuitry mapping. Many auto-tracing algorithms have been developed toward full reconstruction. However, it is still challenging to trace the weak signals of neurite fibers that often correspond to axons. Results We proposed a method, named the NeuMiner, for tracing weak fibers by combining two strategies: an online sample mining strategy and a modified gamma transformation. NeuMiner improved the recall of weak signals (voxel values &lt;20) by a large margin, from 5.1 to 27.8%. This is prominent for axons, which increased by 6.4 times, compared to 2.0 times for dendrites. Both strategies were shown to be beneficial for weak fiber recognition, and they reduced the average axonal spatial distances to gold standards by 46 and 13%, respectively. The improvement was observed on two prevalent automatic tracing algorithms and can be applied to any other tracers and image types. Availability and implementation Source codes of NeuMiner are freely available on GitHub (https://github.com/crazylyf/neuronet/tree/semantic_fnm). Image visualization, preprocessing and tracing are conducted on the Vaa3D platform, which is accessible at the Vaa3D GitHub repository (https://github.com/Vaa3D). All training and testing images are cropped from high-resolution fMOST mouse brains downloaded from the Brain Image Library (https://www.brainimagelibrary.org/), and the corresponding gold standards are available at https://doi.brainimagelibrary.org/doi/10.35077/g.25. Supplementary information Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>36571479</pmid><doi>10.1093/bioinformatics/btac816</doi><orcidid>https://orcid.org/0000-0003-0848-5113</orcidid><orcidid>https://orcid.org/0000-0002-1209-875X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics (Oxford, England), 2023-01, Vol.39 (1)
issn 1367-4803
1367-4811
language eng
recordid cdi_proquest_miscellaneous_2758356341
source Oxford Journals Open Access Collection; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Algorithms
Animals
Availability
Axons
Bioinformatics
Brain
Circuits
Fibers
Image resolution
Mice
Neurites
Neuroimaging
Neurons
Reconstruction
Software
Tracing
title Tracing weak neuron fibers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A12%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracing%20weak%20neuron%20fibers&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Liu,%20Yufeng&rft.date=2023-01-01&rft.volume=39&rft.issue=1&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btac816&rft_dat=%3Cproquest_cross%3E3133523456%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133523456&rft_id=info:pmid/36571479&rft_oup_id=10.1093/bioinformatics/btac816&rfr_iscdi=true