Insights into the Correlation of Microscopic Motions of [c2]Daisy Chains with Macroscopic Mechanical Performance for Mechanically Interlocked Networks
Mimicking filament sliding in sarcomeres using artificial molecular muscles such as [c2]daisy chains has aroused increasing interest in developing advanced polymeric materials. Although few bistable [c2]daisy chain-based mechanically interlocked polymers (MIPs) with stimuli-responsive behaviors ha...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2023-01, Vol.145 (1), p.567-578 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mimicking filament sliding in sarcomeres using artificial molecular muscles such as [c2]daisy chains has aroused increasing interest in developing advanced polymeric materials. Although few bistable [c2]daisy chain-based mechanically interlocked polymers (MIPs) with stimuli-responsive behaviors have been constructed, it remains a significant challenge to establish the relationship between microscopic responsiveness of [c2]daisy chains and macroscopic mechanical properties of the corresponding MIPs. Herein, we report two mechanically interlocked networks (MINs) consisting of dense [c2]daisy chains with individual extension (MIN-1) or contraction (MIN-2) conformations decoupled from a bistable precursor, which serve as model systems to address the challenge. Upon external force, the extended [c2]daisy chains in MIN-1 mainly undergo elastic deformation, which is able to assure the strength, elasticity, and creep resistance of the corresponding material. For the contracted [c2]daisy chains, long-range sliding motion occurs along with the release of latent alkyl chains between the two DB24C8 wheels, and accumulating lots of such microscopic motions endows MIN-2 with enhanced ductility and ability of energy dissipation. Therefore, by decoupling a bistable [c2]daisy chain into individual extended and contracted ones, we directly correlate the microscopic motion of [c2]daisy chains with macroscopic mechanical properties of MINs. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.2c11105 |