Population regulation and adaptive dynamics of cross-feeding
The particular importance of evolutionary studies in microbial experimental systems is that starting from the level of the metabolism of individual cells, the adaptive dynamics can be followed step by step by biochemical, genetic, and population dynamical tools. Moreover, the coincidence of evolutio...
Gespeichert in:
Veröffentlicht in: | Biologia futura 2022-12, Vol.73 (4), p.393-403 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The particular importance of evolutionary studies in microbial experimental systems is that starting from the level of the metabolism of individual cells, the adaptive dynamics can be followed step by step by biochemical, genetic, and population dynamical tools. Moreover, the coincidence of evolutionary and ecological time scales helps to clarify the mutual role of ecological and evolutionary principles in predicting adaptive dynamics in general. Ecological principles define the ecological conditions under which adaptive branching can occur. This paper overviews and interprets the results of empirical and modeling studies of the evolution of metabolic cross-feeding in glucose-limited
E.coli
chemostats and batch cultures in the context of theories of robust coexistence and adaptive dynamics. Empirical results consistently demonstrate that the interactions between cells are mediated by the changing metabolite concentrations in the cultures and modeling confirms that these changes may control the adaptive dynamics of the clones. In consequence, the potential results of evolution can be predicted at the functional level by evolutionary flux balance analysis (evoFBA), while the genetic changes are more contingent. evoFBA follows the scheme of adaptive dynamics theory by calculating the feedback environment that changes during the evolutionary process and provides a promising tool to further investigate adaptive divergence in small microbial communities. Three general conclusions close the paper. |
---|---|
ISSN: | 2676-8615 2676-8607 |
DOI: | 10.1007/s42977-022-00147-y |