Extending vision ray calibration by determination of focus distances

The application of cameras as sensors in optical metrology techniques for three-dimensional topography measurement, such as fringe projection profilometry and deflectometry, presumes knowledge regarding the metric relationship between image space and object space. This relation is established by cam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2022-12, Vol.30 (26), p.47801-47815
Hauptverfasser: Sperling, Yann, Bartsch, Jonas, Gauchan, Shishir, Bergmann, Ralf B
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The application of cameras as sensors in optical metrology techniques for three-dimensional topography measurement, such as fringe projection profilometry and deflectometry, presumes knowledge regarding the metric relationship between image space and object space. This relation is established by camera calibration and a variety of techniques are available. Vision ray calibration achieves highly precise camera calibration by employing a display as calibration target, enabling the use of active patterns in the form of series of phase-shifted sinusoidal fringes. Besides the required spatial coding of the display surface, this procedure yields additional full-field contrast information. Exploiting the relation between full-field contrast and defocus, we present an extension of vision ray calibration providing the additional information of the focus distances of the calibrated camera. In our experiments we achieve a reproducibility of the focus distances in the order of mm. Using a modified Laplacian based focus determination method, we confirm our focus distance results within a few mm.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.475420