Efficient visual adsorption of Pb2+ by nanocellulose/sodium alginate microspheres with fluorescence sensitivity

In this study, carbon dots (CDs) were prepared by a one-pot hydrothermal method using tempo-oxidized cellulose nanocrystals (TOCNC) and polyethylenimine (PEI). The CDs were self-assembled with a microsphere adsorbent prepared using TOCNC and sodium alginate (SA). CDs-TOCNC/SA—an environmentally frie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2023-02, Vol.228, p.13-22
Hauptverfasser: Wang, Hanyu, Chen, Yehong, Dorsel, Padonou-Kengue Patrick, Wu, Chaojun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, carbon dots (CDs) were prepared by a one-pot hydrothermal method using tempo-oxidized cellulose nanocrystals (TOCNC) and polyethylenimine (PEI). The CDs were self-assembled with a microsphere adsorbent prepared using TOCNC and sodium alginate (SA). CDs-TOCNC/SA—an environmentally friendly, fluorescent-sensitive, and recyclable microsphere adsorbent—was obtained. FTIR analysis showed that PEI successfully modified the CDs. In addition, the fluorescence quenching of CDs was observed when the concentration of Pb2+ was 0.0001–100 mg/L, indicating that CDs can dynamically monitor Pb2+. CDs-TOCNC/SA can produce blue fluorescence under 365 nm UV light and selectively and efficiently adsorb Pb2+. When the concentration of Pb2+ was 0.0001–100 mg/L, fluorescence quenching of the adsorbent was observed, indicating that CDs-TOCNC/SA could visually adsorb Pb2+. The adsorption isotherm and kinetic parameters show that the adsorption process conforms to the Langmuir isotherm model at 298 K, and the maximum adsorption capacity of Pb2+ was 190.1 mg/g at pH = 5. Moreover, CDs-TOCNC/SA could still obtain 78.99 % Pb2+ after five sorption-desorption cycles. The adsorption mechanism may involve ion exchange, electrostatic attraction, intra-particle diffusion, and chemical complexation.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2022.12.180