Influence of Shear Deformation on Buckling of Pultruded Fiber Reinforced Plastic Profiles

Theoretical studies of the influence of shear deformation on the flexural, torsional, and lateral buckling of pultruded fiber reinforced plastic (FRP)-I-profiles are presented. Theoretical developments are based on the governing energy equations and full section member properties. The solution for f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of composites for construction 2002-11, Vol.6 (4), p.241-248
1. Verfasser: Roberts, T. M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Theoretical studies of the influence of shear deformation on the flexural, torsional, and lateral buckling of pultruded fiber reinforced plastic (FRP)-I-profiles are presented. Theoretical developments are based on the governing energy equations and full section member properties. The solution for flexural buckling is consistent with the established solution based on the governing differential equation. The new solutions for torsional and lateral buckling incorporate a reduction factor similar to that for flexural buckling. The solution for lateral buckling also incorporates the influence of prebuckling displacements. Closed form solutions for a series of simply supported, pultruded FRP I-profiles, based on experimentally determined full section flexural and torsional properties, indicate the following conclusions. For members subjected to axial compression, shear deformation can reduce the elastic flexural and torsional buckling loads by up to approximately 15% and 10%, respectively. For members subjected to bending, prebuckling displacements can increase the buckling moments by over 20% while shear deformation decreases the buckling moments by less than 5%.
ISSN:1090-0268
1943-5614
DOI:10.1061/(ASCE)1090-0268(2002)6:4(241)