Location- and density-based hierarchical clustering using similarity analysis

This paper presents a new approach to hierarchical clustering of point patterns. Two algorithms for hierarchical location- and density-based clustering are developed. Each method groups points such that maximum intracluster similarity and intercluster dissimilarity are achieved for point locations o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 1998-09, Vol.20 (9), p.1011-1015
Hauptverfasser: Bajcsy, P., Ahuja, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1015
container_issue 9
container_start_page 1011
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 20
creator Bajcsy, P.
Ahuja, N.
description This paper presents a new approach to hierarchical clustering of point patterns. Two algorithms for hierarchical location- and density-based clustering are developed. Each method groups points such that maximum intracluster similarity and intercluster dissimilarity are achieved for point locations or point separations. Performance of the clustering methods is compared with four other methods. The approach is applied to a two-step texture analysis, where points represent centroid and average color of the regions in image segmentation.
doi_str_mv 10.1109/34.713365
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_27577459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>713365</ieee_id><sourcerecordid>27577459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-6d35bb243504fb18e3afc2900e660eab2790aaec5d021bf27cff22d09b3d1bf43</originalsourceid><addsrcrecordid>eNqF0D1Pw0AMBuATAolSGFiZMiExpPjOuSQ3ooovKYgF5uhyceihNCnnZOi_J1UqVhZblh97eIW4lrCSEsw9JqtMIqb6RCykQROjRnMqFiBTFee5ys_FBfM3gEw04EK8Fb2zg--7OLJdHdXUsR_2cWWZ6mjjKdjgNt7ZNnLtyAMF331FIx8q-61vbZj4dGrbPXu-FGeNbZmujn0pPp8eP9YvcfH-_Lp-KGKHkA9xWqOuKpWghqSpZE5oG6cMAKUpkK1UZsBacroGJatGZa5plKrBVFhPc4JLcTv_3YX-ZyQeyq1nR21rO-pHLlWOWurU_A8znWWJPsC7GbrQMwdqyl3wWxv2pYTykGyJSTknO9mb2Xoi-nPH5S-_4HRh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27577459</pqid></control><display><type>article</type><title>Location- and density-based hierarchical clustering using similarity analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Bajcsy, P. ; Ahuja, N.</creator><creatorcontrib>Bajcsy, P. ; Ahuja, N.</creatorcontrib><description>This paper presents a new approach to hierarchical clustering of point patterns. Two algorithms for hierarchical location- and density-based clustering are developed. Each method groups points such that maximum intracluster similarity and intercluster dissimilarity are achieved for point locations or point separations. Performance of the clustering methods is compared with four other methods. The approach is applied to a two-step texture analysis, where points represent centroid and average color of the regions in image segmentation.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/34.713365</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Character recognition ; Clustering algorithms ; Clustering methods ; Graph theory ; Image analysis ; Image color analysis ; Image edge detection ; Image segmentation ; Image texture analysis ; Pattern analysis</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 1998-09, Vol.20 (9), p.1011-1015</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-6d35bb243504fb18e3afc2900e660eab2790aaec5d021bf27cff22d09b3d1bf43</citedby><cites>FETCH-LOGICAL-c308t-6d35bb243504fb18e3afc2900e660eab2790aaec5d021bf27cff22d09b3d1bf43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/713365$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/713365$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bajcsy, P.</creatorcontrib><creatorcontrib>Ahuja, N.</creatorcontrib><title>Location- and density-based hierarchical clustering using similarity analysis</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>This paper presents a new approach to hierarchical clustering of point patterns. Two algorithms for hierarchical location- and density-based clustering are developed. Each method groups points such that maximum intracluster similarity and intercluster dissimilarity are achieved for point locations or point separations. Performance of the clustering methods is compared with four other methods. The approach is applied to a two-step texture analysis, where points represent centroid and average color of the regions in image segmentation.</description><subject>Character recognition</subject><subject>Clustering algorithms</subject><subject>Clustering methods</subject><subject>Graph theory</subject><subject>Image analysis</subject><subject>Image color analysis</subject><subject>Image edge detection</subject><subject>Image segmentation</subject><subject>Image texture analysis</subject><subject>Pattern analysis</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0D1Pw0AMBuATAolSGFiZMiExpPjOuSQ3ooovKYgF5uhyceihNCnnZOi_J1UqVhZblh97eIW4lrCSEsw9JqtMIqb6RCykQROjRnMqFiBTFee5ys_FBfM3gEw04EK8Fb2zg--7OLJdHdXUsR_2cWWZ6mjjKdjgNt7ZNnLtyAMF331FIx8q-61vbZj4dGrbPXu-FGeNbZmujn0pPp8eP9YvcfH-_Lp-KGKHkA9xWqOuKpWghqSpZE5oG6cMAKUpkK1UZsBacroGJatGZa5plKrBVFhPc4JLcTv_3YX-ZyQeyq1nR21rO-pHLlWOWurU_A8znWWJPsC7GbrQMwdqyl3wWxv2pYTykGyJSTknO9mb2Xoi-nPH5S-_4HRh</recordid><startdate>19980901</startdate><enddate>19980901</enddate><creator>Bajcsy, P.</creator><creator>Ahuja, N.</creator><general>IEEE</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19980901</creationdate><title>Location- and density-based hierarchical clustering using similarity analysis</title><author>Bajcsy, P. ; Ahuja, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-6d35bb243504fb18e3afc2900e660eab2790aaec5d021bf27cff22d09b3d1bf43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Character recognition</topic><topic>Clustering algorithms</topic><topic>Clustering methods</topic><topic>Graph theory</topic><topic>Image analysis</topic><topic>Image color analysis</topic><topic>Image edge detection</topic><topic>Image segmentation</topic><topic>Image texture analysis</topic><topic>Pattern analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bajcsy, P.</creatorcontrib><creatorcontrib>Ahuja, N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bajcsy, P.</au><au>Ahuja, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Location- and density-based hierarchical clustering using similarity analysis</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>1998-09-01</date><risdate>1998</risdate><volume>20</volume><issue>9</issue><spage>1011</spage><epage>1015</epage><pages>1011-1015</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>This paper presents a new approach to hierarchical clustering of point patterns. Two algorithms for hierarchical location- and density-based clustering are developed. Each method groups points such that maximum intracluster similarity and intercluster dissimilarity are achieved for point locations or point separations. Performance of the clustering methods is compared with four other methods. The approach is applied to a two-step texture analysis, where points represent centroid and average color of the regions in image segmentation.</abstract><pub>IEEE</pub><doi>10.1109/34.713365</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 1998-09, Vol.20 (9), p.1011-1015
issn 0162-8828
1939-3539
language eng
recordid cdi_proquest_miscellaneous_27577459
source IEEE Electronic Library (IEL)
subjects Character recognition
Clustering algorithms
Clustering methods
Graph theory
Image analysis
Image color analysis
Image edge detection
Image segmentation
Image texture analysis
Pattern analysis
title Location- and density-based hierarchical clustering using similarity analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T06%3A33%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Location-%20and%20density-based%20hierarchical%20clustering%20using%20similarity%20analysis&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Bajcsy,%20P.&rft.date=1998-09-01&rft.volume=20&rft.issue=9&rft.spage=1011&rft.epage=1015&rft.pages=1011-1015&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/34.713365&rft_dat=%3Cproquest_RIE%3E27577459%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27577459&rft_id=info:pmid/&rft_ieee_id=713365&rfr_iscdi=true