Location- and density-based hierarchical clustering using similarity analysis

This paper presents a new approach to hierarchical clustering of point patterns. Two algorithms for hierarchical location- and density-based clustering are developed. Each method groups points such that maximum intracluster similarity and intercluster dissimilarity are achieved for point locations o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 1998-09, Vol.20 (9), p.1011-1015
Hauptverfasser: Bajcsy, P., Ahuja, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a new approach to hierarchical clustering of point patterns. Two algorithms for hierarchical location- and density-based clustering are developed. Each method groups points such that maximum intracluster similarity and intercluster dissimilarity are achieved for point locations or point separations. Performance of the clustering methods is compared with four other methods. The approach is applied to a two-step texture analysis, where points represent centroid and average color of the regions in image segmentation.
ISSN:0162-8828
1939-3539
DOI:10.1109/34.713365