Solid-Phase Synthesis of Cereblon-Recruiting Selective Histone Deacetylase 6 Degraders (HDAC6 PROTACs) with Antileukemic Activity

In this work, we utilized the proteolysis targeting chimera (PROTAC) technology to achieve the chemical knock-down of histone deacetylase 6 (HDAC6). Two series of cereblon-recruiting PROTACs were synthesized via a solid-phase parallel synthesis approach, which allowed the rapid preparation of two HD...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2022-12, Vol.65 (24), p.16860-16878
Hauptverfasser: Sinatra, Laura, Yang, Jing, Schliehe-Diecks, Julian, Dienstbier, Niklas, Vogt, Melina, Gebing, Philip, Bachmann, Luisa M., Sönnichsen, Melf, Lenz, Thomas, Stühler, Kai, Schöler, Andrea, Borkhardt, Arndt, Bhatia, Sanil, Hansen, Finn K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we utilized the proteolysis targeting chimera (PROTAC) technology to achieve the chemical knock-down of histone deacetylase 6 (HDAC6). Two series of cereblon-recruiting PROTACs were synthesized via a solid-phase parallel synthesis approach, which allowed the rapid preparation of two HDAC6 degrader mini libraries. The PROTACs were either based on an unselective vorinostat-like HDAC ligand or derived from a selective HDAC6 inhibitor. Notably, both PROTAC series demonstrated selective degradation of HDAC6 in leukemia cell lines. The best degraders from each series (denoted A6 and B4) were capable of degrading HDAC6 via ternary complex formation and the ubiquitin–proteasome pathway, with DC50 values of 3.5 and 19.4 nM, respectively. PROTAC A6 demonstrated promising antiproliferative activity via inducing apoptosis in myeloid leukemia cell lines. These findings highlight the potential of this series of degraders as effective pharmacological tools for the targeted degradation of HDAC6.
ISSN:0022-2623
1520-4804
DOI:10.1021/acs.jmedchem.2c01659