Linear inverse problems in wave motion: nonsymmetric first-kind integral equations
We present a general framework to study the solution of first-kind integral equations. The integral operator is assumed to be compact and nonself-adjoint and the integral equation can possess a nonempty null space. An approach is presented for adding contributions from the null space to the minimum-...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2000-10, Vol.48 (10), p.1607-1617 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1617 |
---|---|
container_issue | 10 |
container_start_page | 1607 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 48 |
creator | Dudley, D.G. Habashy, T.M. Wolf, E. |
description | We present a general framework to study the solution of first-kind integral equations. The integral operator is assumed to be compact and nonself-adjoint and the integral equation can possess a nonempty null space. An approach is presented for adding contributions from the null space to the minimum-energy solution of the integral equation through the introduction of weighted Hilbert spaces. Stability, accuracy, and nonuniqueness of the solution are discussed through the use of model resolution, data fit, and model covariance operators. The application of this study is to inverse problems that exhibit nonuniqueness. |
doi_str_mv | 10.1109/8.899677 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_27561897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>899677</ieee_id><sourcerecordid>28358334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-1ffdb3caa18ac0c48fabca49248d5e2497ea3cb9a401a99a5f6a964c2b0723c63</originalsourceid><addsrcrecordid>eNqF0UtLw0AQAOBFFKxV8OwpeBAvqfvKZtebFF9QEETBW5hsJ7I12bS7aaX_3pQWBQ96GmbmY5hhCDlldMQYNVd6pI1Reb5HBizLdMo5Z_tkQCnTqeHq7ZAcxTjrU6mlHJDnifMIIXF-hSFiMg9tWWMT-0LyCStMmrZzrb9OfOvjummwC84mlQuxSz-cn_auw_cAdYKLJWxoPCYHFdQRT3ZxSF7vbl_GD-nk6f5xfDNJrVCqS1lVTUthAZgGS63UFZQWpOFSTzPk0uQIwpYGJGVgDGSVAqOk5SXNubBKDMnFdm6_82KJsSsaFy3WNXhsl7HgWmRaCPk_zDPFtMl7ePknZCpnIueamp6e_6Kzdhl8f29hmDEm0zT7mWdDG2PAqpgH10BYF4wWm28Vuth-q6dnW-oQ8Zvtml_y7I_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919995805</pqid></control><display><type>article</type><title>Linear inverse problems in wave motion: nonsymmetric first-kind integral equations</title><source>IEEE Electronic Library (IEL)</source><creator>Dudley, D.G. ; Habashy, T.M. ; Wolf, E.</creator><creatorcontrib>Dudley, D.G. ; Habashy, T.M. ; Wolf, E.</creatorcontrib><description>We present a general framework to study the solution of first-kind integral equations. The integral operator is assumed to be compact and nonself-adjoint and the integral equation can possess a nonempty null space. An approach is presented for adding contributions from the null space to the minimum-energy solution of the integral equation through the introduction of weighted Hilbert spaces. Stability, accuracy, and nonuniqueness of the solution are discussed through the use of model resolution, data fit, and model covariance operators. The application of this study is to inverse problems that exhibit nonuniqueness.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/8.899677</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antennas ; Computed tomography ; Covariance ; Eigenvalues and eigenfunctions ; Hilbert space ; Integral equations ; Inverse problems ; Mathematical model ; Mathematical models ; Null space ; Operators ; Packaging ; Physics ; Stability ; Wave motion</subject><ispartof>IEEE transactions on antennas and propagation, 2000-10, Vol.48 (10), p.1607-1617</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-1ffdb3caa18ac0c48fabca49248d5e2497ea3cb9a401a99a5f6a964c2b0723c63</citedby><cites>FETCH-LOGICAL-c366t-1ffdb3caa18ac0c48fabca49248d5e2497ea3cb9a401a99a5f6a964c2b0723c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/899677$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/899677$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dudley, D.G.</creatorcontrib><creatorcontrib>Habashy, T.M.</creatorcontrib><creatorcontrib>Wolf, E.</creatorcontrib><title>Linear inverse problems in wave motion: nonsymmetric first-kind integral equations</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>We present a general framework to study the solution of first-kind integral equations. The integral operator is assumed to be compact and nonself-adjoint and the integral equation can possess a nonempty null space. An approach is presented for adding contributions from the null space to the minimum-energy solution of the integral equation through the introduction of weighted Hilbert spaces. Stability, accuracy, and nonuniqueness of the solution are discussed through the use of model resolution, data fit, and model covariance operators. The application of this study is to inverse problems that exhibit nonuniqueness.</description><subject>Antennas</subject><subject>Computed tomography</subject><subject>Covariance</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Hilbert space</subject><subject>Integral equations</subject><subject>Inverse problems</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Null space</subject><subject>Operators</subject><subject>Packaging</subject><subject>Physics</subject><subject>Stability</subject><subject>Wave motion</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0UtLw0AQAOBFFKxV8OwpeBAvqfvKZtebFF9QEETBW5hsJ7I12bS7aaX_3pQWBQ96GmbmY5hhCDlldMQYNVd6pI1Reb5HBizLdMo5Z_tkQCnTqeHq7ZAcxTjrU6mlHJDnifMIIXF-hSFiMg9tWWMT-0LyCStMmrZzrb9OfOvjummwC84mlQuxSz-cn_auw_cAdYKLJWxoPCYHFdQRT3ZxSF7vbl_GD-nk6f5xfDNJrVCqS1lVTUthAZgGS63UFZQWpOFSTzPk0uQIwpYGJGVgDGSVAqOk5SXNubBKDMnFdm6_82KJsSsaFy3WNXhsl7HgWmRaCPk_zDPFtMl7ePknZCpnIueamp6e_6Kzdhl8f29hmDEm0zT7mWdDG2PAqpgH10BYF4wWm28Vuth-q6dnW-oQ8Zvtml_y7I_g</recordid><startdate>20001001</startdate><enddate>20001001</enddate><creator>Dudley, D.G.</creator><creator>Habashy, T.M.</creator><creator>Wolf, E.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope></search><sort><creationdate>20001001</creationdate><title>Linear inverse problems in wave motion: nonsymmetric first-kind integral equations</title><author>Dudley, D.G. ; Habashy, T.M. ; Wolf, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-1ffdb3caa18ac0c48fabca49248d5e2497ea3cb9a401a99a5f6a964c2b0723c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Antennas</topic><topic>Computed tomography</topic><topic>Covariance</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Hilbert space</topic><topic>Integral equations</topic><topic>Inverse problems</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Null space</topic><topic>Operators</topic><topic>Packaging</topic><topic>Physics</topic><topic>Stability</topic><topic>Wave motion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dudley, D.G.</creatorcontrib><creatorcontrib>Habashy, T.M.</creatorcontrib><creatorcontrib>Wolf, E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dudley, D.G.</au><au>Habashy, T.M.</au><au>Wolf, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear inverse problems in wave motion: nonsymmetric first-kind integral equations</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2000-10-01</date><risdate>2000</risdate><volume>48</volume><issue>10</issue><spage>1607</spage><epage>1617</epage><pages>1607-1617</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>We present a general framework to study the solution of first-kind integral equations. The integral operator is assumed to be compact and nonself-adjoint and the integral equation can possess a nonempty null space. An approach is presented for adding contributions from the null space to the minimum-energy solution of the integral equation through the introduction of weighted Hilbert spaces. Stability, accuracy, and nonuniqueness of the solution are discussed through the use of model resolution, data fit, and model covariance operators. The application of this study is to inverse problems that exhibit nonuniqueness.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/8.899677</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2000-10, Vol.48 (10), p.1607-1617 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_proquest_miscellaneous_27561897 |
source | IEEE Electronic Library (IEL) |
subjects | Antennas Computed tomography Covariance Eigenvalues and eigenfunctions Hilbert space Integral equations Inverse problems Mathematical model Mathematical models Null space Operators Packaging Physics Stability Wave motion |
title | Linear inverse problems in wave motion: nonsymmetric first-kind integral equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A32%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20inverse%20problems%20in%20wave%20motion:%20nonsymmetric%20first-kind%20integral%20equations&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Dudley,%20D.G.&rft.date=2000-10-01&rft.volume=48&rft.issue=10&rft.spage=1607&rft.epage=1617&rft.pages=1607-1617&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/8.899677&rft_dat=%3Cproquest_RIE%3E28358334%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919995805&rft_id=info:pmid/&rft_ieee_id=899677&rfr_iscdi=true |