Linear inverse problems in wave motion: nonsymmetric first-kind integral equations

We present a general framework to study the solution of first-kind integral equations. The integral operator is assumed to be compact and nonself-adjoint and the integral equation can possess a nonempty null space. An approach is presented for adding contributions from the null space to the minimum-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2000-10, Vol.48 (10), p.1607-1617
Hauptverfasser: Dudley, D.G., Habashy, T.M., Wolf, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1617
container_issue 10
container_start_page 1607
container_title IEEE transactions on antennas and propagation
container_volume 48
creator Dudley, D.G.
Habashy, T.M.
Wolf, E.
description We present a general framework to study the solution of first-kind integral equations. The integral operator is assumed to be compact and nonself-adjoint and the integral equation can possess a nonempty null space. An approach is presented for adding contributions from the null space to the minimum-energy solution of the integral equation through the introduction of weighted Hilbert spaces. Stability, accuracy, and nonuniqueness of the solution are discussed through the use of model resolution, data fit, and model covariance operators. The application of this study is to inverse problems that exhibit nonuniqueness.
doi_str_mv 10.1109/8.899677
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_27561897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>899677</ieee_id><sourcerecordid>28358334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-1ffdb3caa18ac0c48fabca49248d5e2497ea3cb9a401a99a5f6a964c2b0723c63</originalsourceid><addsrcrecordid>eNqF0UtLw0AQAOBFFKxV8OwpeBAvqfvKZtebFF9QEETBW5hsJ7I12bS7aaX_3pQWBQ96GmbmY5hhCDlldMQYNVd6pI1Reb5HBizLdMo5Z_tkQCnTqeHq7ZAcxTjrU6mlHJDnifMIIXF-hSFiMg9tWWMT-0LyCStMmrZzrb9OfOvjummwC84mlQuxSz-cn_auw_cAdYKLJWxoPCYHFdQRT3ZxSF7vbl_GD-nk6f5xfDNJrVCqS1lVTUthAZgGS63UFZQWpOFSTzPk0uQIwpYGJGVgDGSVAqOk5SXNubBKDMnFdm6_82KJsSsaFy3WNXhsl7HgWmRaCPk_zDPFtMl7ePknZCpnIueamp6e_6Kzdhl8f29hmDEm0zT7mWdDG2PAqpgH10BYF4wWm28Vuth-q6dnW-oQ8Zvtml_y7I_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919995805</pqid></control><display><type>article</type><title>Linear inverse problems in wave motion: nonsymmetric first-kind integral equations</title><source>IEEE Electronic Library (IEL)</source><creator>Dudley, D.G. ; Habashy, T.M. ; Wolf, E.</creator><creatorcontrib>Dudley, D.G. ; Habashy, T.M. ; Wolf, E.</creatorcontrib><description>We present a general framework to study the solution of first-kind integral equations. The integral operator is assumed to be compact and nonself-adjoint and the integral equation can possess a nonempty null space. An approach is presented for adding contributions from the null space to the minimum-energy solution of the integral equation through the introduction of weighted Hilbert spaces. Stability, accuracy, and nonuniqueness of the solution are discussed through the use of model resolution, data fit, and model covariance operators. The application of this study is to inverse problems that exhibit nonuniqueness.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/8.899677</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antennas ; Computed tomography ; Covariance ; Eigenvalues and eigenfunctions ; Hilbert space ; Integral equations ; Inverse problems ; Mathematical model ; Mathematical models ; Null space ; Operators ; Packaging ; Physics ; Stability ; Wave motion</subject><ispartof>IEEE transactions on antennas and propagation, 2000-10, Vol.48 (10), p.1607-1617</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-1ffdb3caa18ac0c48fabca49248d5e2497ea3cb9a401a99a5f6a964c2b0723c63</citedby><cites>FETCH-LOGICAL-c366t-1ffdb3caa18ac0c48fabca49248d5e2497ea3cb9a401a99a5f6a964c2b0723c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/899677$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/899677$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dudley, D.G.</creatorcontrib><creatorcontrib>Habashy, T.M.</creatorcontrib><creatorcontrib>Wolf, E.</creatorcontrib><title>Linear inverse problems in wave motion: nonsymmetric first-kind integral equations</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>We present a general framework to study the solution of first-kind integral equations. The integral operator is assumed to be compact and nonself-adjoint and the integral equation can possess a nonempty null space. An approach is presented for adding contributions from the null space to the minimum-energy solution of the integral equation through the introduction of weighted Hilbert spaces. Stability, accuracy, and nonuniqueness of the solution are discussed through the use of model resolution, data fit, and model covariance operators. The application of this study is to inverse problems that exhibit nonuniqueness.</description><subject>Antennas</subject><subject>Computed tomography</subject><subject>Covariance</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Hilbert space</subject><subject>Integral equations</subject><subject>Inverse problems</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Null space</subject><subject>Operators</subject><subject>Packaging</subject><subject>Physics</subject><subject>Stability</subject><subject>Wave motion</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0UtLw0AQAOBFFKxV8OwpeBAvqfvKZtebFF9QEETBW5hsJ7I12bS7aaX_3pQWBQ96GmbmY5hhCDlldMQYNVd6pI1Reb5HBizLdMo5Z_tkQCnTqeHq7ZAcxTjrU6mlHJDnifMIIXF-hSFiMg9tWWMT-0LyCStMmrZzrb9OfOvjummwC84mlQuxSz-cn_auw_cAdYKLJWxoPCYHFdQRT3ZxSF7vbl_GD-nk6f5xfDNJrVCqS1lVTUthAZgGS63UFZQWpOFSTzPk0uQIwpYGJGVgDGSVAqOk5SXNubBKDMnFdm6_82KJsSsaFy3WNXhsl7HgWmRaCPk_zDPFtMl7ePknZCpnIueamp6e_6Kzdhl8f29hmDEm0zT7mWdDG2PAqpgH10BYF4wWm28Vuth-q6dnW-oQ8Zvtml_y7I_g</recordid><startdate>20001001</startdate><enddate>20001001</enddate><creator>Dudley, D.G.</creator><creator>Habashy, T.M.</creator><creator>Wolf, E.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope></search><sort><creationdate>20001001</creationdate><title>Linear inverse problems in wave motion: nonsymmetric first-kind integral equations</title><author>Dudley, D.G. ; Habashy, T.M. ; Wolf, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-1ffdb3caa18ac0c48fabca49248d5e2497ea3cb9a401a99a5f6a964c2b0723c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Antennas</topic><topic>Computed tomography</topic><topic>Covariance</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Hilbert space</topic><topic>Integral equations</topic><topic>Inverse problems</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Null space</topic><topic>Operators</topic><topic>Packaging</topic><topic>Physics</topic><topic>Stability</topic><topic>Wave motion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dudley, D.G.</creatorcontrib><creatorcontrib>Habashy, T.M.</creatorcontrib><creatorcontrib>Wolf, E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dudley, D.G.</au><au>Habashy, T.M.</au><au>Wolf, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear inverse problems in wave motion: nonsymmetric first-kind integral equations</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2000-10-01</date><risdate>2000</risdate><volume>48</volume><issue>10</issue><spage>1607</spage><epage>1617</epage><pages>1607-1617</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>We present a general framework to study the solution of first-kind integral equations. The integral operator is assumed to be compact and nonself-adjoint and the integral equation can possess a nonempty null space. An approach is presented for adding contributions from the null space to the minimum-energy solution of the integral equation through the introduction of weighted Hilbert spaces. Stability, accuracy, and nonuniqueness of the solution are discussed through the use of model resolution, data fit, and model covariance operators. The application of this study is to inverse problems that exhibit nonuniqueness.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/8.899677</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2000-10, Vol.48 (10), p.1607-1617
issn 0018-926X
1558-2221
language eng
recordid cdi_proquest_miscellaneous_27561897
source IEEE Electronic Library (IEL)
subjects Antennas
Computed tomography
Covariance
Eigenvalues and eigenfunctions
Hilbert space
Integral equations
Inverse problems
Mathematical model
Mathematical models
Null space
Operators
Packaging
Physics
Stability
Wave motion
title Linear inverse problems in wave motion: nonsymmetric first-kind integral equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A32%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20inverse%20problems%20in%20wave%20motion:%20nonsymmetric%20first-kind%20integral%20equations&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Dudley,%20D.G.&rft.date=2000-10-01&rft.volume=48&rft.issue=10&rft.spage=1607&rft.epage=1617&rft.pages=1607-1617&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/8.899677&rft_dat=%3Cproquest_RIE%3E28358334%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919995805&rft_id=info:pmid/&rft_ieee_id=899677&rfr_iscdi=true