Linear inverse problems in wave motion: nonsymmetric first-kind integral equations
We present a general framework to study the solution of first-kind integral equations. The integral operator is assumed to be compact and nonself-adjoint and the integral equation can possess a nonempty null space. An approach is presented for adding contributions from the null space to the minimum-...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2000-10, Vol.48 (10), p.1607-1617 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a general framework to study the solution of first-kind integral equations. The integral operator is assumed to be compact and nonself-adjoint and the integral equation can possess a nonempty null space. An approach is presented for adding contributions from the null space to the minimum-energy solution of the integral equation through the introduction of weighted Hilbert spaces. Stability, accuracy, and nonuniqueness of the solution are discussed through the use of model resolution, data fit, and model covariance operators. The application of this study is to inverse problems that exhibit nonuniqueness. |
---|---|
ISSN: | 0018-926X 1558-2221 |
DOI: | 10.1109/8.899677 |